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ABSTRACT
We present the design and implementation of an activity
recognition system in wide area aerial video surveillance us-
ing Entity Relationship Models (ERM). In this approach,
finding an activity is equivalent to sending a query to a Re-
lational DataBase Management System (RDBMS). By in-
corporating reference imagery and Geographic Information
System (GIS) data, tracked objects can be associated with
physical meanings, and several high levels of reasoning, such
as traffic patterns or abnormal activity detection, can be per-
formed. We demonstrate that different types of activities,
with hierarchical structure, multiple actors, and context in-
formation, are effectively and efficiently defined and inferred
using the ERM framework. We also show how visual tracks
can be better interpreted as activities by using geo informa-
tion. Experimental results on both real visual tracks and
GPS traces validate our approach.

Categories and Subject Descriptors
H.2.8 [Database Management]: Database Applications -
Spatial databases and GIS

General Terms
Algorithms, Experimentation

Keywords
Wide aerial surveillance, activity recognition

1. INTRODUCTION
Our goal is to provide an efficient activity recognition

framework for wide area aerial video surveillance where ve-
hicular segmented tracks are the essential components. The
input to our activity recognition framework consists of geo-
registered tracks inferred by a tracking module. Activities
are defined as tracks associated with certain properties and
their relationships with one or more objects (be it tracks, or
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Figure 1: Overview of the proposed approach.

other georeferenced entities). Since an activity may involve
a sequence of motion patterns (events) and multiple actors,
how to represent events and activities is a challenging task.

We propose to define and recognize a large number of
activities with the Entity Relationship Model (ERM) [3]
framework (Fig. 1). The ERM is an appropriate framework
to capture multiple relationships between elements, which
allows us to efficiently represent hierarchical structures, mul-
tiple actor activities, and context information. We use a
RDBMS (Relational DataBase Management System) [1], to
store and retrieve all meta-data in our activity recognition
system, including tracking results, geospatial objects and
context information, and use Structured Query Language
(SQL) [1] to define and recognize activities. In this ap-
proach, finding an activity is equivalent to sending a set of
SQL statements to the RDBMS. As an additional benefit,
RDBMS scales well to a distributed system to handle large
amounts of data.

2. RELATED WORK
We briefly review the literature on activity recognition in

wide area surveillance. Reilly et al. [11] shows object detec-
tion and tracking in a wide area surveillance domain, where
bipartite graph matching and linking tracks were applied to
detection results, and grid cells were employed to provide a
set of local scene constraints such as road orientation and
object context for tracking. Pollard et al. [8] presented ac-
tivity detection results using a complex probabilistic frame-
work but only a single activity, convoys, was presented and
geospatial constraints were not considered. In [5], high-level
complex event inference from multimodal data using Markov
Logic Networks is presented for wide area surveillance. A
framework for semi-supervised nonlinear embedding meth-
ods, based on a neural network optimizing the graph-based
cost function, to analysis large-scale spatio-temporal net-
work data is presented [9]. In [6], large sets of mobile objects’
trajectories are distributed to a network of database servers



Table 1: ERM representation
Entity

track point, tracklet, track, traffic rule,
road segment, building, area, · · ·

Relationship
building -belong to- road segment
tracklet -is on- road segment
road segment -has- traffic rule
must stop -is a- traffic rule, · · ·

Event can be represented by a relationship
tracklet (track id, · · · , speed=95)
tracklet (track id, · · · , road id)
road (road id, · · · , speed limit)
speeding: tracklet.speed > road.speed limit

by using Space-partitioned Moving Objects Databases (SP-
MODs).
Given our domain, where vehicular segmented tracklets

are the essential components, we show that activities can be
effectively and efficiently inferred using a relational database
model.

3. ERM-BASED ACTIVITY RECOGNITION

3.1 Computing tracklets from imagery
The atomic spatio-temporal information in our system is

called a tracklet, a segmented portion of a track represent-
ing vehicle’s “instantaneous”motion, such as going straight,
turning left or turning right. Each tracklet has a collec-
tion of attributes xi = {λ1, λ2, · · · , λm}, where an element
λi presents a physical property such as time, location, and
speed.
We use a state of the art real-time tracker [10], which has

been used by Lawrence Livermore National Lab. Since the
most important parts of the track are those where the direc-
tion of travel changes, we segment the track’s trajectory into
segments which are accurately approximated by lines (linear
model). Tracklets are determined from the resulting segmen-
tation by creating one tracklet for each segment (“straight”
tracklet), as well as one for the path between every two
adjacent segments (“turn” tracklet). Furthermore, straight
tracklets longer than 100 meters are broken into shorter 50
meter segments. Now, for each tracklet, we compute a col-
lection of attributes, such as location, heading (applies to
straight tracklets), heading change (applies to turn track-
lets), speed, acceleration, and accumulated distance traveled
so far. Geo-registration of input data is a crucial step since
tracked objects can be associated with GIS information [7].

3.2 Activity Representation Using ERM
We use ERM (Entity Relationship Models) to capture

multiple relationships between elements. Such a framework
has been extensively used and validated for a long period
of time in real world applications [4, 3]. The basic entity-
relationship modeling approach is based on describing data
in terms of the three parts: entities, relationships between
entities, and attributes of entities or relationships.
We represent track points {p}, tracklets {x}, and tracks

{o} as entities and link the three entities: {p} ⊂ {x} ⊂
{o}. The collection of physical properties of each tracklet is
represented as the attributes of the tracklet entity, using a

RDBMS table in practice.
We also represent geospatial data (traffic rules, roads,

buildings, and areas) the same way. An entity “road” is
a collection of road segments and each segment has a set
of attributes such as type, name, and speed-limit. Table 1
illustrates our ERM representation.

An activity aj is defined as a collection of tracklets obeying
certain properties:

aj = {x|x ∈ Ωj , Cj(x) > θj}, (1)

where Ωj , Cj(x) ∈ [0, 1], and θj represent the relationship
associated with the activity, the confidence function and
the recognition threshold, respectively. The relationship Ωj

links between the attributes of entities, which include both
the physical properties of tracklets and the geospatial data.
We can define relationships that are not explicitly repre-
sented in the ERM.

For example, “Speeding” can be seen as an activity defined
by the relationship between the attributes of tracklets (e.g.
speed) and geospatial objects (e.g. speed-limit):

speeding := {x| r ∈ Groad,
x.roadID = r.ID,
x.s > r.s,
C(x.s, r.s) > θ}

(2)

where r, r.ID, x.roadID, x.s, r.s, x.pos, r.pos represent a road
from GIS data (Groad), its ID, the road ID of tracklet x, the
speed of x, the speed limit of r, the location of tracklet x,
and the location of road segment r, respectively. C(x.s, r.s)
describes the activity confidence, which increases with the
gap between x.s and r.s. For instance, the confidence can
be defined by the Euclidean distance between the tracklet x
and the road segment r: 1/(∥x.pos− r.pos∥+ ϵ) > θ1. The
confidence measure is used to ensure the reliability of com-
posite activities as well as offering users a way to tune the
system. Note that all activities associated with geo-objects
should handle this type of location uncertainty.

3.3 Activity Inference
The ERM-based representation implies that inferring an

activity is a search problem to find a subset of tracklets from
entire data set, which satisfies certain conditions.

ERM is implemented as a standard RDBMS and we can
express set operations by SQL to find an activity from our
database. The activity recognition problem is equivalent to
sending queries to the RDBMS.

A basic SQL statement has SELECT, FROM, andWHERE
clauses: The SELECT command specifies the output at-
tributes of entities, FROM defines the domain entities as-
sociated with the activity, and WHERE describes the set of
relationships to define the activity and also its confidence.
Activity definitions can easily be expressed by SQL state-
ments.

3.3.1 Example I: Simple Activity
Activities associated with motion patterns, such as “U-

turn”, “Loop”, and “3-point-turn”, are easily defined and in-
ferred by the ERM framework and its corresponding SQL
statements.

Definition. A “Loop” is defined as a segmented track
where there exist two tracklets {xi, xj} whose Euclidean
distance1 ∥xi.pos−xj .pos∥ is smaller than the traveling dis-
1Each position of a tracklet represents the geometric mean



tance:

Loop = {xi, xj | (1− ∥xi.pos−xj .pos∥
xj .acc−xi.acc

) > θ,

i < j,
xi.ID = xj .ID},

(3)

where (xj .acc−xi.acc) represents the traveling distance be-
tween xi and xj . The traveling distance is computed as the
difference of the accumulated distances between these two
tracklets.
The above definition is represented by SQL as shown in

Table 2, where RDBMS tables T1 and T2 come from the
input tracklet table (e.g SELECT * INTO T1 FROM track-
let) and dist(·, ·) is a user defined function 2 to compute the
Euclidean distance.

Table 2: SQL: “Loop”
SELECT * FROM T1, T2
WHERE

T1.track id = T2.track id AND
(1 - (dist(T1.pos, T2.pos)/(T2.acc - T1.acc))) > θ

Note that this definition provides multiple locations of
tracklets for each loop due to the inequality constraint. Also,
it returns only a set of tracklets that correspond to the start-
ing and ending locations of a loop. Which means that we
might need some additional post-processing steps to refine
the results. One can extract all tracklets in between the
starting and ending locations if the shape of the loop is im-
portant. In this paper, we focus on identifying key tracklets.

3.3.2 Example II: Composite Activity
Suppose that we have three independent events identified

as three entity sets: “Entry” (aEn), “Stay” (aSt) and “Exit”
(aEx). “Visit” is a composite activity that can be described
as a combination of these events.
Definition. We define “Visit” as the sequence of aEn,

aSt, and aEx:

visit = {xj | i = j − 1, k = j + 1,
xi ∈ aEn, xj ∈ aSt, xk ∈ aEx,
C(xi)EnC(xj)StC(xk)Ex > θ},

(4)

with xi, xj , xk, three tracklets from the same track. The
confidence of “Visit” is defined as CEn(xi)CSt(xj)CEx(xk)
and the confidence of each activity should be normalized in
the corresponding SQL implementation.

3.3.3 Example III: Multiple Actors Activity
Activities associated with multiple actors, such as“Source”,

“Sink”, “Convoy”, and “Following”, can also be defined and
inferred by ERM and SQL statements. We identify a source
of tracks by finding a set of tracks that have the same start-
ing location in different time periods.
Definition. Let us first define “2-Source” as a temporary

set of pairs of tracklets which exit from the same location:

2src = {(xi, xj)| xi.trackID ̸= xj .trackID,
xi ∈ aEx, xj ∈ aEx,
∥xi.pos− xj .pos∥ < ω},

(5)

between the starting and the ending points.
2For simplicity, we use an abstract notation and the function
can be implemented using a common RDBMS [1].

where ω is a threshold. It provides a set of tracklet pairs
which appear as many times as they are involved in a 2-
tuple source. To extract N-tuple sources, we need to count
the number of occurrences of each tracklet:

source = {xi|Si = {(xi, ·) ∈ 2src}, |Si| > θ}, (6)

where |Si| is the cardinality of each subset Si which contains
the same tracklets in the pairs of the 2src set. Note that
this definition provides all “SOURCE” , where the number
of tracklets is greater than two and we can count the number
of tracklets as a confidence measure.

3.3.4 Example IV: Geospatial Activities
The ERM framework is ideally suited to incorporate GIS

information, as was shown for“Speeding”(Section. 3.2). Many
activities can only be inferred within the context of geospa-
tial information. We can find“all tracklets on a specific road”
by looking at the correspondences between the locations of
tracklets and the locations of known road segments.

Definition. “On-road-X” is a set of tracklets which are
on the same road:

on road X = {x| x.roadID = r.ID,
r.name = “X”,
1/(∥x.pos− r.pos∥+ ϵ) > θ,
∀r ∈ Groad},

(7)

where r and r.name designate a road segment and its name,
and ∥x.pos−r.pos∥ the Euclidian distance between the road
segment and the tracklet. In SQL implementation, we com-
pute the location of each tracklet in advance, and store the
id of road segment into the tracklet table. The optional con-
dition (1/(∥x.pos − r.pos∥ + ϵ) > θ) provides a confidence
measure.

Note that most spatial activities can also be enriched by
having a geospatial attribute. For instance, a “convoy” be-
comes a “convoy traveling on highway X” when the spatial
tracks are associated with geospatial information.

3.4 Scalability
One of the benefits of using an ERM model is that there

exist highly optimized RDMBS commercial implementations
such as [1]. Furthermore, there has been serious effort in
making RDBMS perform equally well in distributed environ-
ments, under high load, and with limited downtime. There-
fore, by expressing activity definitions in SQL, we can take
advantage of existing, distributed, industrial parsers, mak-
ing our proposed system very scalable.

4. EXPERIMENTAL RESULTS
We have implemented our framework using a standard

RDBMS [1], and validated the approach on real visual tracks
and GPS datasets. We define 7 activities for evaluation (in-
cluding “Loop”): a three point turn (“3PT”) consists of two
neighbor turns {xi, xj |((xi.ϕ/π)(xj .ϕ/π))/(∥xi.pos−xj .pos∥)
> θ}; a two point turn (“2PT”) has an acute angle: {x|x.ϕ >
θ};“Stay” is defined by the ratio between the time and travel
distance between two points {xi|(∥(xj .time − xi.time)∥) /
(∥xj .acc − xj .acc∥) > θ}; “U-turn” has an acute angle turn
between two tracklets which are located on the same road
{xj |xj .ϕ < π/4, ∥xi.pos− xk.pos∥ < ω1, (xk.acc− xi.acc) >
ω2};“Entry”and“Exit”are defined with a stop, turns, speed
changes and the travel distance. “Entry” is defined as {xk|xk.s
< xi.s, xk.end = True, xj .ϕ > ω1, xk.acc > ω2}, where



Figure 2: Examples of identified Loops.

{xi, xj , xk}, x.ϕ, and ωi represent different tracklets from
the same track, such as i < j < k, the turn angle attribute,
and internal thresholds associated with the definition, re-
spectively.

4.1 Real dataset (CLIF 2006)
Data. The dataset is a set of tracking results extracted

from the CLIF 2006 dataset [2]. This dataset contains wide
area motion imagery captured from an airborne sensor. The
sensor is composed of a matrix of 6 cameras, where the size
of each image tile is 4008 × 2672. The video is captured at
roughly 2Hz, and it is in grayscale. The footprint of the area
where we computed tracks is about 1km2, and its duration
is about 8 minutes. Each track is on average 1 minute long.
The total number of tracks estimated in the sequence of
interest is more than 8000.
Method. Our input is a set of tracks extracted by the

tracking module. To build a set of ground truth data, from
a set of automatically extracted tracks, we manually identi-
fied individual tracks that include pre-defined activities and
assign labels for each data. In our dataset, we identified 2
loops, 2 2-point turns, 3 3-point turns, 8 entry and 7 ex-
its. We inserted all identified tracks into a single table in
our RDBMS and inferred activities using pre-defined SQL
statements.
Some tracks have more than one activity (e.g., a loop and

a 3 point turn) but the locations associated with specific ac-
tivities can be different. To evaluate the result of an activity,
we extracted all tracklets, compared to the activity defini-
tion, from entire dataset, visualize the result, and then, ver-
ify manually whether the extracted tracklets represent the
actual activity or not.
Results. We were able to identify all simple activities,

such as “2 point turn”, “3 point turn”, “Entry”, “Exit”, and
“loop”, which can be easily seen in real data set. The preci-
sion and recall were 0.76 and 0.86, respectively.
In addition, we identified a number of geospatial activi-

ties, such as “on road X”, “speeding”, and “approaching X”,
as well as some complex activities including multiple actors,
such as “source (or sink) around X”. The extracted activ-
ities and geospatial objects can be visualized using Google
Earth, where we can identify both activities and associated
geospatial objects. Figure 2 (left) shows one of identified
geospatial activities in the real dataset.

4.2 GPS trajectory dataset
Data. We also evaluated our method on labeled data

from GPS. The data was acquired from cooperative users’
GPS units in Los Angeles. We used a standard GPS to

record short trips between 10 and 40 minutes long. GPS fil-
ters were deactivated, so only raw data have been recorded.
Compared to the visual tracks obtained from our tracking
module, GPS tracks do not differ a lot. First the localization
error is similar to video geo-registration. Second, the GPS
acquisition frequency (1Hz) is only half our video framerate
(2Hz).

Method. We use the same tracklet segmentation module
to extract tracklets from the GPS dataset. To build a set
of ground truth data from a set of automatically extracted
tracks, we manually selected individual tracks that include
pre-defined activities and assign labels for each data. The
dataset includes 17 loops, 7 three point turns, and 13 u-
turns.

Results. We were able to identify all simple activities,
such as “Loop”, “3-point turn”, “U-turn”, and “Stay”, which
can be easily seen in real data set. The precision and recall
were 0.97 and 0.90, respectively. Fig. 2 (right) shows a set
of identified activities (“Loop”) in a single GPS track.

5. CONCLUSION
Our results show that using Entity Relationship Models

enables us to identify simple activities, such as “U-turn”, as
well as some complex activities including multiple actors,
such as “source” and “sink” in wide area aerial imagery.

In addition to further validation, we will work on finding
simpler mechanisms to define events and verifying efficiency.
Also, we plan to incorporate probabilistic reasoning into our
model to better handle uncertainties in the data.
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