
Scale Space Based Grammar for Hand Detection

by

Jan Prokaj

A thesis submitted in partial fulfillment of the requirements

for the Honors in the Major Program in Computer Science

in the College of Engineering and Computer Science

and in The Burnett Honors College

at the University of Central Florida

Orlando, Florida

Spring Term

2006

Thesis Chair: Dr. Niels da Vitoria Lobo

Abstract

For detecting difficult objects, such as hands, an algorithm is presented that uses tokens and

a grammar.

Tokens are found by employing a new scale space edge detector that finds scale invari-

ant features at object boundaries. First, the scale space is constructed. Then edges at each

scale are found and the scale space is flattened into a single edge image.

To detect a hand pattern, a grammar is defined using curve tokens for finger tips and

wedges, and line tokens for finger sides. Curve tokens are found by superimposing a curve

model on the scale space edge image and scoring its fit. Line tokens are found by using a

modified Burns line finder.

A hand pattern is identified by parsing these tokens using a graph based algorithm. On

a database of 200 images of finger tips and wedges, finger tip curves are detected 85% of

the time, and wedge curves are detected 70% of the time. On a database of 287 images of

open hands against cluttered backgrounds, hands are correctly identified 70% of the time.

Acknowledgments

This project would not have been possible without my research advisor, Dr. Niels Lobo,

who has guided me through this difficult field. I would also like to thank the REU program

at University of Central Florida, and the College of Engineering and Computer Science for

their support of the project.

iii

Contents

1. Introduction . 1

2. Methods . 2

2.1 Finding tokens . 3

2.1.1 Scale space edge detection . 5

2.1.2 Curve tokens . 8

2.1.3 Line tokens . 12

2.2 Parsing tokens . 14

2.2.1 Parsing algorithm . 15

3. Results . 18

3.1 The best models for curve detection . 18

3.2 Hand detection . 19

4. Discussion . 27

5. Conclusions . 30

iv

List of Figures

2.1 Algorithm overview. 3

2.2 Major hand features and joints. 4

2.3 A portion of the scale space of an image 5

2.4 A portion of the Canny scale space of an image 7

2.5 Combining the images within an octave 8

2.6 Combining octave images (detail) . 9

2.7 Potential models for finger tips and wedges. 10

2.8 Curves detected on a sample image . 12

2.9 Lines detected using the modified Burns line finder 14

2.10 Zigzag pattern . 15

3.1 Tips detected on an example image 1 using different models. 21

3.2 Tips detected on an example image 2 using different models. 21

3.3 Tips detected on an example image 3 using different models. 21

3.4 Wedges detected on an example image 1 using different models. 23

3.5 Wedges detected on an example image 2 using different models. 23

3.6 Wedges detected on an example image 3 using different models. 23

3.7 Examples of detected curve tokens. 24

3.8 Examples of detected line tokens for images in Figure 3.7. 25

3.9 Examples of detected hand patterns for images in Figure 3.7. 26

v

List of Tables

3.1 Results of testing single models on a finger tip database. 20

3.2 Results of testing pairs of models on a finger tip database. 20

3.3 Results of testing groups of three models on a finger tip database. 20

3.4 Results of testing single models on a wedge database. 22

3.5 Results of testing pairs of models on a wedge database. 22

3.6 Results of testing groups of three models on a wedge database. 22

vi

1. Introduction

Object detection is one of the fundamental problems of computer vision. The problems of

pattern recognition and artificial intelligence have been worked on for a long time, and as a

result much progress has been made in detecting rigid objects in images. Detecting hands,

however, has appeared to be difficult. One reason for this is that a hand has 21 degrees

of freedom (15 for joints, 3 for position, 3 for rotation), allowing it to be in a very large

number of configurations. Yet, a solution to this problem has many applications, including

human computer interaction, and video surveillance to name a few.

There has been much effort on hand tracking [2], [3], [4], [5], but these do not give

answers on detection in a single cluttered image. The most successful technique for detect-

ing objects is to find invariant features, and then match them to a previously defined set.

Finding good features, however, is difficult. Lowe [1] has shown that scale space invari-

ance is especially important. Without scale invariance, the features will not be stable, and

detection will suffer. Indeed, this property plays an important role in the presented scale

space hand detection algorithm.

Interestingly, the feature finding approach can be intuitively viewed using formal lan-

guage concepts. The problem of finding features is cast as a “lexical analysis” on the input

image. Features, or tokens, found this way can be “parsed” according to a particular gram-

mar to give a higher meaning. In this case the grammar defines the language of the object

to be detected, and the parser becomes an object detection algorithm. In the following

chapters, this new approach is described in detail from token finding to token parsing.

1

2. Methods

The algorithm is divided into two stages: token finding (lexical analysis), and token parsing.

These two stages correspond to the feature finding and feature processing stages in standard

object detection.

In token finding, the raw input, an array of pixels in this case, is virtually categorized

into a set of tokens. Each token type gives new information about the input, therefore

it is good to have many different tokens. For example, compare using two tokens with

using four tokens. In an input of ten units, and assuming one unit represents one token,

the former method will allow one to distinguish 210 = 1024 different inputs, while the

latter will distinguish 410 = 220 = 1,048,576 different inputs. It is possible that a state

represented using two tokens is actually 1,024 different states! The precision of object

detection grows exponentially with the number of tokens.

In token parsing, the tokens are analyzed for certain combinations of their positions

in input. These combinations are defined by the grammar of the language we want to

“understand.” Simple grammars are preferred, because they are easy to implement, but

they are not always possible to derive considering the object at hand. Non-rigid objects,

such as hands, are especially difficult to reduce to simple grammar rules. Notably, the

grammar determines the accuracy of object detection.

The overview of the algorithm is shown in Figure 2.1. Each step is explained in detail

in the following sections.

2

1. Find tokens

• Calculate scale space edge image

• Find curve tokens

– Use finger tip models

– Use finger wedge models

• Find line tokens

2. Parse tokens

• Create a weighted graph using pattern distance

• Back-tracking search for strings of the grammar

Figure 2.1: Algorithm overview.

2.1 Finding tokens

The kinds of tokens one wants to find depends on the object to be detected. There is a large

number of choices: corners, curves, lines, or SIFT features. To detect a hand curve tokens,

and line tokens will be used. These naturally describe the shape of fingers, which are the

most discriminating feature of a hand. A finger top is curved, as is the wedge between

fingers. These are connected by a finger side, easily modeled as a line. This is illustrated

in Figure 2.2.

While the tokens are generally unrestricted, Lowe [1] has shown that they should be

scale invariant. An image’s scale is the level of blur. A small blur provides a very detailed

view of an image. This corresponds to “zooming in.” A large blur only shows the major

characteristics of an image. This corresponds to “zooming out.” Without scale invariance,

the tokens are not stable and the detection rate is lower. Lowe’s SIFT tokens ensure this

property, and they produce excellent results when detecting rigid objects that are affinely

trackable. But they are less useful for objects that have important information encoded

within the shapes of their boundaries. Hand with its 15 joints, and other non-rigid objects

3

Figure 2.2: Major hand features and joints.

are a good example of this. The curved finger top and a wedge both occur on the boundary

of a hand. See Figure 2.2.

Thus, the curve and line tokens that were selected for hand detection will need to be

scale invariant. To achieve this goal, the scale space of an image is used. The scale space

is defined as the convolution of a variable-scale Gaussian, G(x,y,σ), with an input image,

I(x,y):

G(x,y,σ)∗ I(x,y),

where ∗ is the convolution operation in x and y, and

G(x,y,σ) =
1

2πσ2
e

x2+y2

2σ2 .

Figure 2.3 illustrates a portion of the scale space for one image with three different values

of σ.

However, to find tokens at boundaries, edge information is needed as well. A single

edge image, however, is computed at only one scale. A common technique is to blur the

4

(a) (b)

(c) (d)

Figure 2.3: A portion of the scale space of an image. (a) The original image. (b), (c), (d)

Blurred with increasing σ.

image with a particular σ, calculate its gradient, and use it to find local maxima [6]. This

can be a problem because if the scale is too large, needed detail may be lost; if the scale

is too small, the edges are likely to be disconnected. A scale space of edges is a natural

solution. The edges detected using this structure then serve as a good source of scale

invariant tokens.

2.1.1 Scale space edge detection

By constructing the scale space of an image, we gain access to the result of all possible

blurring operations. This information can be used to calculate one edge image that has a lot

of detail using data from the bottom of the scale space, and at the same time has continuous

edges, using data from the top of the scale space.

5

There are two steps to calculate a scale space edge image. In the first step, a Canny

scale space is constructed. In the second step, this scale space is “flattened” into a single

edge image.

Step 1: Canny Scale Space

The Canny scale space is derived from the Gaussian scale space. The Gaussian scale space

is constructed as a pyramid according to [1], but with a maximum of three octaves. Calcu-

lating more octaves does not produce significantly better results.

The Canny scale space is computed by applying the Canny edge detection algorithm on

every image in the Gaussian scale space. However, the algorithm is modified to compute

the gradient without any blurring in the convolution, because the blurring is already done

by the scale space. A standard 1×3 edge mask, [−1 0 1], is used for this purpose. The high

threshold in the double thresholding step of the algorithm is set so that 25% of the image is

edges and the low threshold is set to 35% of the high threshold. This step is illustrated in

Figure 2.4.

Step 2: Flattening the space

To convert the Canny scale space into a single edge image, it must be flattened without

losing too much information. First, images within each octave are combined into one octave

edge image and then the octave edge images are combined into one final edge image.

Combining the images within an octave is straightforward. It begins by unioning the

images in each octave. As a result of this operation, an “on” pixel in the union image means

that it was “on” in at least one image (or scale) in this octave. Since increasing blurring

causes edges to slightly move, the edges from each image in an octave do not overlap each

other, and the union image does not have thin edges anymore. Also, the thick edges may

have an “off” pixel in the middle, producing a “double” edge. To solve this problem, the

6

(a) (b)

(c) (d)

Figure 2.4: A portion of the Canny scale space of an image. (a) The original image. (b),

(c), (d) Blurred with increasing σ.

union image is first smoothed by setting on any “off” pixels that are surrounded by at least

six “on” pixels, and then it is skeletonized. A skeletonizing operation makes thick edges

one pixel thin. See Figure 2.5.

Combining the octave edge images is more involved, because the images are different

dimensions. The combinations proceed down the scale. Therefore, the top two octaves

are combined first, followed by a combination with the lowest octave image. If more than

three octave were used, the combinations would continue this pattern. The combination

algorithm overlaps the lower scale image (larger dimension) with the higher scale image

(smaller dimension), filling in any gaps in the lower scale image that are connected in

the higher scale image. The overlap is done segment by segment, rather than all at once.

In other words, for each connected segment in the higher scale image, the corresponding

points in the lower scale image are traversed until reaching an end point. At this point,

7

(a) (b)

(c) (d)

Figure 2.5: Combining the images within an octave. (a) The original image. (b) Unioned

octave. (c) Smoothed octave. (d) Skeletonized octave.

the traversal continues on the higher scale segment, marking the edge on the lower scale

image, until it is possible to resume again on the lower scale image. After all connected

segments in the higher scale image are processed, the lower scale image will have as many

gaps filled as possible. See Figure 2.6.

After all octave edge images are combined in this manner, the result will be one scale

invariant edge image, that is suitable for finding the needed tokens.

2.1.2 Curve tokens

A finger tip and a wedge between fingers can both be characterized as curves. They only

differ in proportion, one is wider than the other. This is illustrated in Figure 2.2. To

find these curves in the scale invariant edge image, a model-based approach is used. The

algorithm is based on [8].

8

(a) (b)

(c) (d)

Figure 2.6: Combining octave images (detail). (a) The original image. (b) Lower scale

image. (c) Higher scale image. (d) Final edge image.

In a model-based approach to detection, the model is naturally a crucial part of the

method. To determine the best model to use for detecting finger tip curves and wedge

curves, seven different models are tested. These are illustrated in Figure 2.7. Ideally, only

two models are used, where one detects only finger tips, and the other one only wedges

between fingers.

Once a model is selected, curves are found by superimposing a model’s edge image

to different locations in the scale space edge image, and calculating a similarity score.

To determine these “candidate” locations, several methods can be used. The best method

gives a low number of locations, and gives accurate locations. A simple method would

be to divide the edges into different segments, and let the centroid of each segment be a

candidate location. This method is fast, but the problem is that it does not guarantee that

the locations are on edges. If a location is not on an edge pixel, it is much more difficult to

align the model to the image.

9

(a) (b) (c) (d)

(e) (f) (g)

Figure 2.7: Potential models for finger tips and wedges.

A better, but slower, method is to calculate lines in the edge image, and for each line

let a candidate location be the endpoints and the midpoint of a line. This method produces

many candidate locations at curved edges, which increases the likelihood of finding the

best location for a model, but the increased number causes more computation. This is the

method that is used in this curve detection algorithm. The line finder used is described in

the next section, but it can be any other line finder as long as it calculates lines from edges

to guarantee that the candidate locations are on edge pixels.

The algorithm must also deal with different sizes, and orientations of curves. To handle

multiple orientations of curves, the selected model is rotated to give 16 rotated versions

of the model. More orientations can be handled by creating additional rotated versions.

Different curve sizes are handled by precomputing different sized models for each rotated

version, keeping the same proportion. There are 41 different sizes used, all with odd di-

mensions to produce consistent scores across rotation.

The score for a given candidate location is the maximum of the scores of all sizes of the

model with the same orientation as the location. The orientation for any point in the edge

image is determined from the gradient of the image at the smallest scale, because this image

has the most accurate orientation data. For each size, actually two opposite orientations are

tried, because the gradient can be negative or positive and have the same orientation.

10

To superimpose a model correctly, the center point of a model edge curve, which is

the top of a curve, is aligned with the candidate location. The score of a model, having a

particular size and orientation, is calculated using

∑k e−0.25min(Dk) |~mk ·~vk|

k

where k is each model edge point, min(Dk) is the minimum of the five distances to the

closest image edge point that would be obtained by shifting the model 0 and ±1 units in

the parallel and perpendicular directions to the model’s orientation, ~mk is the unit normal

vector at the k-th model edge point, and ~vk is the unit normal vector at the closest image

edge point, given by min(Dk). In other words, for each model edge point the score is

determined by the distance to the closest image edge point and the orientation difference

between the two points. The score is the highest if the two points are overlapping each

other (distance is zero) and have parallel orientations. The model is “shifted” one unit in

four directions during the scoring (for a total of five positions), because this increases its

flexibility and increases the score for curves that do not have the exact shape as the model.

Orientation data for the model edge points, which is needed to compute the magnitude of

the dot product, is determined directly from the model gradient. To quickly determine the

closest edge points in the edge image, a distance transform algorithm is used.

The score for each candidate location is compared to a threshold, set to 0.78 in the al-

gorithm, and the location is eliminated for not fitting the model if the score is less than this.

This score, however, only tells how well any curve fits the model. It does not distinguish

between curves on fingers or any other curves.

To eliminate curves that are not likely to be finger tips or wedges, it is required that

each curve found is supported by a line token, as found by a line finder described in the

next section. The line must be parallel, and close to either one of the endpoints of the curve.

This is accomplished by searching for lines in a rectangle 7 pixels wide and 2 ∗ curvesize

11

(a) (b)

Figure 2.8: Curves detected on the sample image (a) are shown in gray.

pixels long and rotated to be parallel with the curve’s orientation. The rectangle is searched

twice, the first time when its side is centered on one curve end, and the second time when

its side is centered on the other end. The lines must have an orientation within 0.55rad of

the curve’s orientation, and their length must be at least 1.1∗ curvesize.

Since the number of candidate locations is large, especially on curved edges, it is pos-

sible that this process produces overlapping curves for neighboring candidate locations.

These duplicate curves are eliminated by calculating the intersection of the bounding rec-

tangles for all pairs of curves. If the intersection is greater than 15% of the area of the

smaller curve, the curve with the lower score is eliminated.

This curve detection algorithm is run with model(s) for finger tips as well as for wedges.

To determine these models from the seven tested, a combination with the highest detection

rate and a reasonable false positive rate is used. This combination is determined in the

results and discussion sections. Figure 2.8 shows a sample output of this algorithm.

2.1.3 Line tokens

To find lines on a scale space edge image, a modified Burns line finder [9] is used. The

original Burns algorithm calculates the lines from the raw intensity image. This is not ideal,

12

because the curve tokens are based on edge information. If the lines are not determined

from the same source, they would not necessarily be aligned with the curves, potentially

causing problems in the token parsing stage. Therefore, the algorithm is modified to extract

the lines directly from the edge image. As mentioned above, the orientation data for the

scale space edge image comes from the gradient of an image with the smallest scale.

The Burns algorithm finds lines by looking for a group of pixels with the same orien-

tation. Lines are discretized into four different types, so that the orientation of pixels on

one line can vary by 45◦. To avoid boundary effects, two such systems are determined, the

second system having orientations offset by 22.5◦. These two systems are then resolved

into a final set of lines. As a result of the first modification to use edge information, the

resolving operation also has to be modified.

The lines from either system are processed in order from the longest to the shortest.

For each line, both systems are analyzed for possible merges with other lines. First, the

line merges with line(s) on the same pixels in the other system. If this causes the line

to partially extend over neighboring lines in its own system, then it merges with them as

well. The line(s) in the other system on the same pixels as this new extension are adjusted

(shortened), but not merged with. The line lengths are updated as the merging goes on, so

that the longest line can be found in the next iteration. This method of resolving the two

systems favors long, unbroken lines, which is what is needed to find lines on finger sides.

Figure 2.9 shows the output of this algorithm on a synthetic sample image.

Even with this controlled merging, few inconsistencies may arise in the final set of lines.

For example, a line may have some of its pixels separated from the main segment. These

cases can not be prevented easily, as they arise with the formation of two line systems.

This is not a concern, however, as this does not happen frequently, or in critical places in

the image.

13

(a) (b)

Figure 2.9: Lines detected on a circle (a) using the modified Burns line finder.

2.2 Parsing tokens

In the second stage of object detection, the tokens from the first stage are analyzed for

certain patterns. These patterns are called strings, because they are defined by the grammar

of the object’s “language.” The set of tokens is then the alphabet of this language.

To detect a hand using this alphabet of curves and lines, the grammar is defined to

enforce the following properties: 1) A finger tip curve has an opposite orientation of a

wedge curve. 2) The endpoints of the curves must be closer than the centers of the curves.

3) There is a line connecting a finger tip curve with a wedge curve. These properties are

formally written below, where t is a finger tip curve, w is a wedge curve, and l is a line.

H → tlwltlwltlwltlwlt

H → tlwltlwltlwltlw | wltlwltlwltlwlt

H → tlwltlwltlwlt

H → tlwltlwltlw | wltlwltlwlt

H → tlwltlwlt

H → tlwltlw | wltlwlt

14

Figure 2.10: This figure illustrates the zigzag pattern we are looking for.

This grammar eliminates strings with three or less curves. This means that only hands

with two or more fingers will be detected. Three curves or less do not give enough confi-

dence that a hand is found, so this requirement eliminates many false positives. The -t-w-t-

sequence produces a “zigzag” pattern across the hand’s fingers. See Figure 2.10 for an

illustration. It is allowed for one token to be missing, but this is not easily expressible in

the grammar.

2.2.1 Parsing algorithm

As discussed above, the input to the parsing algorithm, the parser, is a set of tokens found

in the first stage. The parser analyzes these tokens for strings of the “hand” language, as

defined by the grammar. Since the grammar is simple, just a repeating pattern, it tremen-

dously simplifies parsing.

The strings can be viewed as particular combinations of tokens. A natural approach for

searching for combinations is a graph. First, a graph is constructed containing all possible

pairs of tokens. In practice, however, the graph contains only possible curve pairs, and such

pairs not separated by a line token are removed in the second step. The edges in the graph,

15

termed g-edges and not to be confused with image edges, correspond to the possible curve

pairs. The weight of each g-edge is the pattern distance [10] between two curves (nodes).

The pattern distance is defined as a Euclidian pattern distance,

√

(

x1 − x2

xRange

)2

+

(

y1 − y2

yRange

)2

+

(

θ1 − (θ2 +π)

π

)2

where xRange is the maximum distance in the x-dimension and yRange is the maximum

distance in the y-dimension. Using this formula, the distance between two curves is the

shortest when they are close to each other and have opposite orientations from each other.

This ensures a -tip-wedge-tip- sequence using the first property of the grammar.

In the second step those g-edges are removed that cannot possibly make a valid com-

bination. The criteria are determined from the properties defined above. Using the first

property that adjacent curves have to have opposite orientations, g-edges with orientation

difference less than π
2

are removed. The second property essentially says that a g-edge

must connect curves back to back, where the back is the two endpoints, not the center of

the curve. This is determined by comparing two pixel distances, the plain distance between

two curves and a distance from the point one step above the top (center) of one curve to the

second curve. If the second distance is less than the first, the curves are not oriented back

to back and the g-edge is removed. To enforce the third property that there is a line token

connecting the two curves, a rectangular region centered on the g-edge and 7 pixels wide

is searched for a line parallel to the g-edge. The orientation difference between the g-edge

and the line must be < 0.18rad, and the length must be between 0.675 and 1.6 times the

g-edge length. If no line satisfying this criteria is found, the g-edge is removed.

Once impossible g-edges are removed, the next step is to find a “zigzag” pattern in

this graph. This is done using a recursive back-tracking algorithm. Starting at one node,

all possible g-edges connecting it are sorted by the pattern distance above. The g-edge is

picked and the algorithm goes forward if it satisfies several criteria. If it is impossible to

16

continue from a node, the algorithm back-tracks to the previous node, and takes the next

option. The search stops when at least four curves form the pattern, but not more than nine.

The pattern parser is run on each node of the graph.

The criteria are as follows. The supporting line token, found in the previous step, must

not have been used previously in this pattern, and it must be less than 1.6 times the length

of the previous line token in the pattern. This comes from the fact that fingers on a hand

are more or less the same length. The angle between this g-edge and the previous g-edge

is between 0.12rad and 1.05rad. This is a range for the natural spread of the fingers.

Also, the g-edge must preserve the “zigzag.” It is possible that a g-edge satisfies all the

previous criteria, but crosses a previous g-edge(s), breaking the pattern. This only needs to

be checked for the third and later curves in the pattern. To enforce this, a g-edge is removed

if it intersects, or is on the wrong side of a triangle formed from the previous two g-edges.

Once the g-edge is picked, the algorithm recursively jumps to that connected node, and

looks at all connecting g-edges again.

To allow one missing curve token when a particular node has run out of options, a

virtual curve can be created that is the same size and opposite orientation as the node, and

set its location 3∗curvesize in the parallel and opposite direction of the node and 0.5 times

the distance to the next curve token in the perpendicular direction. To allow one missing

line token, checking for a supporting line is skipped when looking at possible curve pairs.

This case is not implemented however.

Therefore, the output of this algorithm is groups of curves and lines (strings) that outline

the hand’s fingers. It is possible to get more than one group of curves for the same hand,

since the parser is run on each node of the graph. However, the groups would be subsets

of one large group covering all curves on the hand, so this is not a cause for concern.

Nevertheless, a small addition to the parser would be to remove these subsets.

17

3. Results

There are two sections of results. The first one shows the results of determining the best

models to use for finger tip and wedge curve detection. To determine the best models

for finger tip curve detection, the seven models were tested on a database of 200 images of

finger tips against cluttered backgrounds. Similarly, to determine the best models for wedge

curve detection, the models were tested on a database of 200 images of wedges against

cluttered backgrounds. For each image in each database it was recorded what models

detected the curve. The total number of curves found was recorded as well to calculate the

false positive rate.

The second section shows the results of hand detection using the curve and line tokens,

and the parsing algorithm. To decrease the number of false positives, the parser was run

with the option to allow missing tokens turned off. The algorithm was run on a database of

287 images of open hands against cluttered backgrounds. For each image in the database,

it was recorded whether a hand was detected or not. A hand was considered detected if at

least one hand string was found across the hand’s fingers.

3.1 The best models for curve detection

The detection rate and false positive rate for models run on the finger tip database is shown

beginning with Table 3.1. To see the models, refer back to Figure 2.7. The false positive

rate in the tables is a ratio of total curves found to correct curves found. Therefore, a ratio

of 1.5 means that for every correct curve found, there are 0.5 false positive curves found.

18

There were 3 types of combinations investigated: single models, pairs of models, and

groups of three models. Larger groups were avoided for high computation cost with pre-

sumably only a slight improvement in detection rate.

Following the tables, there are three example finger tip images shown. On the first one,

models (d), (e), (f), and (g) detect the tip, while on the second example, models (a), (b), (c),

detect the tip. The first image also shows some false positives. The third image shows the

case when a finger tip is detected by all models except (c).

The detection rate and false positive rate for models run on the wedge database is shown

beginning with Table 3.4. Again, to see the models, refer back to Figure 2.7. As with the

finger tip curves, there are three example wedge images shown following the tables. On

the first one, models (a), (b), (c), and (f) detect the wedge, while on the second example,

models (d), (e), (f), and (g) detect the wedge. The second image also shows some false

positives. The third image shows the case when a wedge is detected by all models.

3.2 Hand detection

The models (c), (e), and (f) were chosen for hand detection. This is explained in the next

section. The hand detection rate using models (c), (e), and (f) is 70%. The number of false

positives was not explicitly counted, but the false positive rate by inspection is between 4.0

and 5.0.

There are 8 example images shown at different parts of the algorithm. The first part,

Figure 3.7, shows the curve tokens in these images. Each color corresponds to a different

model: yellow is model (c), blue is model (e), and green is model (f). The second part,

Figure 3.8, shows the line tokens. The colors are only used for distinguishing between

adjacent lines. The third part, Figure 3.9, shows the detected hand strings as defined by the

grammar. Each string is assigned one of six colors.

19

Table 3.1: Results of testing single models on a finger tip database.

(a) (b) (c) (d) (e) (f) (g)

Detection rate (%) 74.0 49.0 39.5 74.0 78.5 75.5 79.5

False positive rate 1.49 1.90 1.86 1.51 1.57 1.48 1.67

Table 3.2: Results of testing pairs of models on a finger tip database.

(a) + (b) (a) + (c) (a) + (d) (a) + (e) (a) + (f) (a) + (g)

Detection rate (%) 80.5 81.0 82.5 83.5 82.0 84.0

(b) + (c) (b) + (d) (b) + (e) (b) + (f) (b) + (g) (c) + (d)

Detection rate (%) 53.0 86.0 87.0 85.0 87.0 85.5

(c) + (e) (c) + (f) (c) + (g) (d) + (e) (d) + (f) (d) + (g)

Detection rate (%) 86.5 85.5 87.5 79.5 79.0 81.0

(e) + (f) (e) + (g) (f) + (g)

Detection rate (%) 80.5 82.5 81.0

Table 3.3: Results of testing groups of three models on a finger tip database.

(a) + (b) + (c) (a) + (b) + (d) (a) + (b) + (e) (a) + (b) + (f)

Detection rate (%) 82.5 87.0 88.5 87.0

(a) + (b) + (g) (a) + (c) + (d) (a) + (c) + (e) (a) + (c) + (f)

Detection rate (%) 88.5 87.0 88.5 87.0

(a) + (c) + (g) (a) + (d) + (e) (a) + (d) + (f) (a) + (d) + (g)

Detection rate (%) 88.5 84.0 83.5 84.5

(a) + (e) + (f) (a) + (e) + (g) (a) + (f) + (g) (b) + (c) + (d)

Detection rate (%) 83.5 85.0 84.5 87.5

(b) + (c) + (e) (b) + (c) + (f) (b) + (c) + (g) (b) + (d) + (e)

Detection rate (%) 88.5 87.0 89.0 87.5

(b) + (d) + (f) (b) + (d) + (g) (b) + (e) + (f) (b) + (e) + (g)

Detection rate (%) 87.5 88.5 87.5 89.0

(b) + (f) + (g) (c) + (d) + (e) (c) + (d) + (f) (c) + (d) + (g)

Detection rate (%) 87.5 87.0 87.5 88.5

(c) + (e) + (f) (c) + (e) + (g) (c) + (f) + (g) (d) + (e) + (f)

Detection rate (%) 87.5 89.0 88.0 81.5

(d) + (e) + (g) (d) + (f) + (g) (e) + (f) + (g)

Detection rate (%) 82.5 82.0 83.0

20

(a) (b) (c) (d)

(e) (f) (g)

Figure 3.1: Tips detected on an example image 1 using different models.

(a) (b) (c) (d)

(e) (f) (g)

Figure 3.2: Tips detected on an example image 2 using different models.

(a) (b) (c) (d)

(e) (f) (g)

Figure 3.3: Tips detected on an example image 3 using different models.

21

Table 3.4: Results of testing single models on a wedge database.

(a) (b) (c) (d) (e) (f) (g)

Detection rate (%) 55.5 55.5 54.0 47.5 59.0 56.5 59.0

False positive rate 3.31 3.05 3.01 3.08 2.88 2.83 3.06

Table 3.5: Results of testing pairs of models on a wedge database.

(a) + (b) (a) + (c) (a) + (d) (a) + (e) (a) + (f) (a) + (g)

Detection rate (%) 60.5 62.5 64.0 66.0 66.5 67.5

(b) + (c) (b) + (d) (b) + (e) (b) + (f) (b) + (g) (c) + (d)

Detection rate (%) 59.5 67.0 69.0 70.5 69.5 67.5

(c) + (e) (c) + (f) (c) + (g) (d) + (e) (d) + (f) (d) + (g)

Detection rate (%) 69.5 71.0 70.0 59.5 59.0 61.0

(e) + (f) (e) + (g) (f) + (g)

Detection rate (%) 64.0 63.0 64.5

Table 3.6: Results of testing groups of three models on a wedge database.

(a) + (b) + (c) (a) + (b) + (d) (a) + (b) + (e) (a) + (b) + (f)

Detection rate (%) 63.0 68.0 69.5 70.5

(a) + (b) + (g) (a) + (c) + (d) (a) + (c) + (e) (a) + (c) + (f)

Detection rate (%) 70.0 69.0 70.5 71.0

(a) + (c) + (g) (a) + (d) + (e) (a) + (d) + (f) (a) + (d) + (g)

Detection rate (%) 71.0 66.5 67.5 68.5

(a) + (e) + (f) (a) + (e) + (g) (a) + (f) + (g) (b) + (c) + (d)

Detection rate (%) 68.0 68.0 69.5 68.5

(b) + (c) + (e) (b) + (c) + (f) (b) + (c) + (g) (b) + (d) + (e)

Detection rate (%) 70.0 71.5 70.5 69.5

(b) + (d) + (f) (b) + (d) + (g) (b) + (e) + (f) (b) + (e) + (g)

Detection rate (%) 71.5 70.5 71.5 70.5

(b) + (f) + (g) (c) + (d) + (e) (c) + (d) + (f) (c) + (d) + (g)

Detection rate (%) 72.0 70.0 71.5 71.0

(c) + (e) + (f) (c) + (e) + (g) (c) + (f) + (g) (d) + (e) + (f)

Detection rate (%) 72.0 71.0 72.5 64.0

(d) + (e) + (g) (d) + (f) + (g) (e) + (f) + (g)

Detection rate (%) 63.5 65.5 67.0

22

(a) (b) (c) (d)

(e) (f) (g)

Figure 3.4: Wedges detected on an example image 1 using different models.

(a) (b) (c) (d)

(e) (f) (g)

Figure 3.5: Wedges detected on an example image 2 using different models.

(a) (b) (c) (d)

(e) (f) (g)

Figure 3.6: Wedges detected on an example image 3 using different models.

23

Figure 3.7: Examples of detected curve tokens.

24

Figure 3.8: Examples of detected line tokens for images in Figure 3.7.

25

Figure 3.9: Examples of detected hand patterns for images in Figure 3.7.

26

4. Discussion

The highest detection rate of finger tips using a single model is 79.5% for model (g). Using

two models, this figure jumps to 87.5% for a pair of models (c) and (g). Going to a group of

three models is not as dramatic, the highest detection rate rises to 89% for models (b), (c),

and (g). The false positive rate, however, rises with each model addition as well, because

the number of new detections is lower than the new total of curves found. To determine

the best model(s) for curve detection, both the detection rate and the potential false positive

rate must be considered.

With these criteria, using two models is the best option. It is better than using a single

model, because the detection rate rises significantly; the maximum goes up 8%, and the

average goes up over 14%. It is also better than using three models, because the detection

rate further rises only 1.5% for the maximum, and 4.5% for the average. This change is

likely to be offset by the higher false positive rate.The highest detection rate of two models

is 87.5% given by (c) and (g), with the false positive rate being 1.86 and 1.67 respectively.

A better alternative is to use models (c) and (e), which gives a slightly smaller detection

rate of 86.5%, but a lower false positive rate of 1.86 and 1.57 respectively.

The best models for wedge detection are determined similarly. The highest detection

rate of wedges using a single model is 59% for model (g). Using two models, this figure

jumps to 71%, and using three models it is 72.5%. Again, using two models is the best

option. It is better than using a single model, because the detection rate is significantly

better; the maximum goes up 12%, and the average goes up 10%. It is also better than

using three models, because the detection rate further rises only 1.5% for the maximum,

27

and 4% for the average. This change is likely to be offset by the higher false positive

rate.The highest detection rate of two models is given by models (c) and (f), with the false

positive rate being 3.01 and 2.83 respectively. This combination is the best, because it gives

a relatively low false positive rate, while achieving a high detection rate.

It is important to realize that when the selected models are used in the curve token

detection algorithm, they are used together, and no distinction is made which models are

detecting finger tips, or wedges. Therefore, the models used for detecting tips and wedges

are (c), (e), and (f). The corresponding detection rate is 87.5%/72% for the two databases.

The 87.5% detection rate on finger tip database means that on average, 4 out of 5 finger

tips are detected. The 72% detection rate on wedge database means that on average, 2 out

of 4 wedges are detected.

False negatives in curve token detection are caused by the lack of contrast in the input

data, which is necessary for edges to be detected in at least one scale. Given the difficulty

of the region where fingers are joined, it is encouraging that wedge curves were found at

such a rate. With closed fingers in particular, detection of wedges is difficult.

The number of false positive curve tokens is high, because it is proportional to the

number of edge pixels in the edge image. Edges are often curve shaped, and thus detectable

by the curve finding algorithm. The high number of false positives is not critical, however,

because the grammar really helps to eliminate most of them.

The hand detection rate is 70%. A major factor in this rate is the detection of wedges.

The parser needs a continuous sequence of curves, which means that when all finger tips

are found, and there are no wedges found, a hand will not be detected. The same applies

when all wedges are detected and no finger tips are, but this case is rare, since wedges

have a detection rate almost 20% lower than finger tips do. This can be solved by allowing

missing curve tokens. The parser has an option of allowing one missing curve token, but it

creates too many false positives and needs to be investigated further before it can be useful.

28

Hand detection performed the best when the fingers were spread, but it worked with

closed fingers as well. This is because a hand with fingers spread has a higher chance of

detecting a wedge curve token, as explained above. The false positive rate largely depends

on the contents of the image. Anything that has a “zigzag” pattern will be detected, such

as stacked binders. The false positive rate can be decreased by considering more features,

such as a hand’s palm, or an image texture at the location of the finger tip curve tokens for

greater accuracy.

29

5. Conclusions

A new approach to object detection was presented. Using tokens and then parsing them

according to the grammar of the object’s language is an intuitive approach that shows the

promise of using formal language theory in computer vision.

Additionally, a new scale space edge detector was presented that enables to find scale

invariant features at object boundaries. This edge detector has many applications; it can be

used anywhere standard edge detectors are. It should be especially useful for those objects

where boundary features are important.

An algorithm for hand detection was presented as well. It gives a promising direction

for detecting hands in cluttered images. Extending its applicability to more hand poses

should be seriously considered.

30

Bibliography

[1] Lowe, D. Distinctive image features from scale-invariant keypoints. IJCV. Vol. 60

(2004). Issue 2. 92-110.

[2] Kolsch, M. and Turk, M. Robust hand detection. Proc. Intl. Conf. Face and Gesture

Recognition. 614-619, 2004.

[3] Pavlovic, V. I. et al. Visual interpretation of hand gestures for human-computer inter-

action: A review. IEEE Trans. on PAMI. Vol. 19 (1997). Issue 7. 677-695.

[4] Wu, Y. and Huang, T. View-independent recognition of hand postures. Proc. Intl. Conf

Computer Vision and Pattern Recognition. 2088-2094, 2000.

[5] Yuan, Q. et al. Automatic 2D hand tracking in video sequences. Proc. IEEE work,

Motion and Video Computing. 250-256, 2005.

[6] Canny, J. A Computation Approach to Edge Detection. IEEE Trans. on PAMI. Vol. 8

(1986). Issue 6. 679-698.

[7] Lindeberg, T. Scale-space theory in computer vision. Boston: Kluwer, 1994.

[8] Garcia, J. et al. Automatic Detection of Heads in Colored Images. CRV 2005. 276-

281.

[9] Burns, J. et al. Extracting straight lines. IEEE Trans. on PAMI. Vol. 8 (1986). Issue

4. 425-455.

[10] Jain, A. and Dubes, R. Algorithms for Clustering Data. Englewood Cliffs, NJ: Pren-

tice Hall, 1988.

31

	Introduction
	Methods
	Finding tokens
	Scale space edge detection
	Curve tokens
	Line tokens

	Parsing tokens
	Parsing algorithm

	Results
	The best models for curve detection
	Hand detection

	Discussion
	Conclusions

