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Abstract

In this work we consider the problem of tracking objects
from a moving airborne platform in wide area surveillance
through long occlusions and/or when their motion is unpre-
dictable. The main idea is to take advantage of the known
3D scene structure to estimate a dynamic occlusion map,
and to use the occlusion map to determine traffic entry and
exit into these zones, which we call sources and sinks. Then
the track linking problem is formulated as an alignment of
sequences of tracks entering a sink and leaving a source.
The sequence alignment problem is solved optimally and
efficiently using dynamic programming.

We have evaluated our algorithm on a vehicle tracking
task in wide area motion imagery and have shown that track
fragmentation is significantly decreased and outperforms
the Hungarian algorithm.

1. Introduction
There has been an intense effort in the Computer Vision

community to solve the object tracking problem for many
years. The goal of this effort is to accurately determine the
location of moving objects in the scene at every timestep.
Knowing this information is essential in applications such
as surveillance, and human computer interaction, and pro-
vides the foundation for higher-level reasoning tasks, such
as event and activity recognition.

As a result of this effort, the tracking performance has
reached a level where we expect excellent results in many
cases; when objects have rich appearance, for example [9].
Nevertheless, there still remain “corner“ cases, which re-
quire a fundamentally different approach to be solved. One
such case is when the moving object becomes occluded long
enough for motion prediction to fail, or if the occlusion is
short, but the object does not have a distinguishing appear-
ance for successful reacquisition. These cases are difficult
to solve without additional constraints. Yet, they occur of-
ten enough to warrant attention.

In this work, we focus on tracking vehicles from a mov-

Figure 1. Automatically computed occlusion map (right) for the
image on the left.

ing airborne platform in wide area surveillance, where the
kind of occlusions just described happens when vehicles
move behind buildings and other structures. The appear-
ance of vehicles here is very weak, usually only allowing us
to distinguish light-colored vehicles from dark-colored ve-
hicles, and small vehicles from large vehicles. Tracking ve-
hicles across such occlusions is practically impossible with-
out knowing more information. Here we explore the use of
known 3D scene structure to estimate dynamic occlusion
maps and improve tracking performance.

An occlusion map as used here is a binary map, which
indicates what regions of the image are occluders of moving
objects. See Figure 1 for an illustration. The occlusion map
is not necessarily complete, there may be occluders which
are not marked in the map (such as trees). Furthermore, the
occlusion map may not be static for the duration of the im-
age sequence due to camera motion. Importantly, the occlu-
sion map is automatically computed from the video stream
by estimating the camera pose in geo-coordinates and pro-
jecting a database of geo-referenced 3D models of buildings
(occluders) to the image.

An occlusion map is useful, because it gives us the abil-
ity to detect occlusion events: a vehicle becoming occluded,
a vehicle becoming visible. Analyzing these occlusion
events, we can determine sources and sinks of traffic in the
scene. While sources and sinks can be estimated without
the use of an occlusion map [17], such techniques are not
robust enough to be used in our domain, where many false
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tracks arise due to the parallax motion of structures off the
ground plane. By matching a sink with a source, we can
apply an ordering constraint to solve the tracking problem:
the sequence of vehicles becoming occluded should be ap-
proximately the same as the sequence of vehicles becoming
visible. This sequence alignment problem is solved using
dynamic programming. Note that by solving this problem
we are able to correctly match vehicles before and after oc-
clusion even if they stop or change motion while being oc-
cluded.

The primary contribution of this work is a novel use of
3D scene structure to improve tracking performance for ob-
jects moving through occlusions where motion prediction
fails and/or when the appearance of objects is only weakly
discriminative. We have evaluated the algorithm on real
sequences from a publicly available wide area motion im-
agery dataset [2] and have shown that track fragmentation
decreases and outperforms the Hungarian algorithm.

2. Related Work
The most related work to ours is the use of geo-spatial

information to aid tracking [19, 20]. A recent example of
this is work by Xiao et al. [19], where the camera pose is
estimated in geo-coordinates to enable the assignment of se-
mantic labels (building, tree) to image regions, and for road
detection. The paper shows an increase in tracking accuracy
when depth information, road network, and semantic scene
segmentation is in use. However, there is only a a brief
mention of using this information for occlusion handling in
tracking, and no algorithm is given. In the followup work
[20], an improved scalable tracker using GIS road network
is presented, but again there is no mention of occlusion han-
dling.

Tracking objects through occlusions has been considered
most recently by Kaucic et al. [10] and Perera et al. [12]. In
the earlier work of Kaucic, an occlusion map is estimated
by segmenting the image into regions and training a classi-
fier to label each region as one of a ”building, road, grass, or
vehicle.“ This occlusion map is then used to constrain loca-
tion of image features for video stabilization, filter out false
moving object detections, and detect when objects are likely
to become occluded. One disadvantage of computing an oc-
clusion map using image features is that it is generally not
as accurate as one computed using known 3D scene geom-
etry. Tracks before and after occlusion are linked using the
Hungarian algorithm, where the pairwise cost is based on
appearance similarity (color histogram matching) and mo-
tion prediction (constant velocity model).

Perera et al. extend this work by incorporating merge and
split hypotheses to handle the many-many correspondence
between moving region detections and objects. The Hun-
garian algorithm is again used as the computational engine
for determining correct track associations. Template match-

ing is used to define an appearance cost and a linear motion
model to define a kinematic cost.

Besides the Hungarian algorithm, another class of meth-
ods for tracking occluded objects is based on a tracking con-
text [5, 21, 8]. Our work also falls in this category as track-
ing context is implicitly formed when sequences of tracks
are matched against other track sequences. In [5], the con-
text is other moving objects, called predictors, whose mo-
tion correlates with that of the occluded object. The predic-
tors are used to predict the location of the occluded object
and associate it with the correct track upon reacquisition,
and are found using Lyapunov Characteristic Exponent. A
more sophisticated approach is presented in [21], where an
object is continuously tracked collaboratively with auxiliary
objects (the context), and the relationship between the aux-
iliary objects and the object of interest is modeled using a
graphical model. Finally, most recently Grabner et al. pre-
sented an approach where the context of an object is a set of
“supporters,” which vote for the location of the object being
tracked. As long as the supporters are visible, the location
of the occluded object can be accurately determined.

The task of the driving algorithm in this work is to align
two sequences of tracks. Sequence alignment is a well-
known pattern recognition technique that has mostly seen
its use in speech [14], and gesture (action) recognition [7, 6]
to temporally align two sequences and in stereo correspon-
dence to estimate disparities [15]. The classic method is
Dynamic Time Warping (DTW), which is a dynamic pro-
gramming algorithm to find the optimum non-linear align-
ment of two sequences. To our knowledge, sequence align-
ment has not been used before to track objects through oc-
clusions.

3. Approach
The goal of our work is to improve tracking of moving

objects, especially when they become occluded for a sig-
nificant amount of time. We focus on the case where the
occlusion is long enough to cause an object’s track to break
and become fragmented. The output of our algorithm is a
track correspondence, which indicates what tracks should
be merged or linked with other tracks.

As indicated in the introduction, we are concerned with
tracking vehicles from a moving platform in wide area
surveillance. Here, the appearance of vehicles is not very
discriminative, and cannot be solely relied upon for correct
track linking. Therefore, as has been done before, we com-
bine appearance with a kinematic model, at least when the
kinematic model is informative. Actually, the strength of
our method is primarily evident when the kinematic model
is unable to correctly predict a vehicle’s location after oc-
clusion.

We are able to accomplish this by applying an ordering
constraint, which says that the sequence of vehicles becom-
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Figure 2. Our framework for tracking vehicles across long occlu-
sions.

ing occluded is approximately the same as the sequence of
vehicles becoming visible after occlusion. In order to apply
this constraint, we need to be able to reliably detect sources
and sinks of traffic in the imagery and match them up cor-
rectly. A traffic sink is where vehicles become occluded and
a traffic source is when they become visible again. Dynamic
occlusion maps are essential for a robust estimation of these
sources and sinks. The occlusion maps are computed auto-
matically by estimating the camera pose in geo-coordinates
and using a database of geo-referenced 3D models of build-
ings. These 3D models can be computed from imagery us-
ing dense 3D reconstruction techniques, or can be acquired
from online sources [3] as we have done in this work.

A flowchart of our approach is in Figure 2.

3.1. Estimating the Dynamic Occlusion Map

The dynamic occlusion map is estimated by projecting
a database of geo-referenced 3D models of buildings to the
input video stream. Every pixel that is written during ras-
terization is marked as occluding. The occlusion map needs
to be in agreement with the underlying imagery, but we do
not require perfect registration. Accurate estimate of the
camera pose in geo-coordinates enables us to achieve good
registration.

GPS and IMU metadata associated with the input im-
agery provide a good initial estimate of the camera pose,
but can not be used directly. To refine this initial estimate,
we register the input imagery with a reference image (map).
The input image transformation is modeled by a homog-
raphy. We perform image registration in a fairly standard
manner: by hierarchically estimating the image transforma-
tion, incrementally increasing the transformation complex-
ity, using state of the art image features, and using a robust
model estimator.

First, a Gaussian image pyramid is built for both the ref-
erence image and the video image. The images are first reg-
istered at the top of the pyramid, then the images at the next

Figure 3. Example of the accuracy of the camera pose estimation.
Accurate estimate of the camera pose results in a good registration
of the 3D models (left) and occlusion map (right) with the image
sequence.

level down are warped using the just estimated transforma-
tion, registered again, and the process continues all the way
down to the bottom of the pyramid which is at the highest
resolution. This hierarchical process significantly increases
the speed and accuracy of the registration, because at each
level, feature correspondences only need to be found in a
small local neighborhood.

The image transformation complexity is simple at the top
of the pyramid and increases on the way down. More specif-
ically, at the top levels of the pyramid, only image transla-
tion is estimated, and a full homography transformation is
not estimated until the bottom levels. This is important, be-
cause at the top levels of the pyramid, the image resolution
is not high enough to support a complex image transforma-
tion, so the estimation procedure is unstable.

State of the art image feature descriptors are used to es-
tablish correspondences at every level of the pyramid [18].
These are accurate and fast to compute. Finally, when esti-
mating image transformation, RANSAC is used to provide
a robust estimate. This is necessary to avoid using image
correspondences on buildings and only make use of corre-
spondences in planar areas.

Once we have a set of correspondences between the ref-
erence map and the video image that satisfy the final ho-
mography estimate, we solve for the camera pose by as-
suming all the correspondences lie on a plane. The algo-
rithm presented by Schweighofer and Pinz [16] is used for
this step. It provides a robust estimate of the pose by ex-
plicitly avoiding a solution that is a local minimum of the
objective function.

The result of occlusion map estimation is illustrated in
Figures 1 and 3. The average registration error is 10 pixels.

3.2. Tracking

Tracks of vehicles in the image sequence can be esti-
mated by any multi-object tracking algorithm. By taking
advantage of the just computed occlusion map, the number
of false tracks can be significantly reduced. In our imple-
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mentation, we used a tracker that computes tracks hierar-
chically – it first computes short tracks, and subsequently
merges them into longer and longer tracks [13]. Comput-
ing tracks in this manner is much more robust than trying
to compute long tracks from the beginning, since relying on
smooth motion or consistent appearance over long time is
unrealistic.

The main feature of the tracker we used is that the
short tracks are computed optimally in a sliding window of
frames. The problem of finding an optimal set of tracks is
formulated by constructing a set of Bayesian networks, each
of which models the joint distribution of detections over a
fixed period of time. MAP inference in this graphical model
then gives an efficient and optimal solution. Occlusions and
missed detections are naturally handled in this model by as-
suming consistent object motion and appearance, which is
a reasonable assumption over a short, fixed, time period.

3.3. Estimating sources and sinks

Our goal is to track vehicles even when they become oc-
cluded for a long time. Such long occlusions cause a track-
ing algorithm to lose a vehicle’s track and initiate a new
one when the vehicle becomes visible again. To achieve
our goal, we need to find these false initiations and merge
them with the correct earlier tracks that were prematurely
terminated.

False initiations due to occlusion form a traffic “source”
– a location where many tracks originate. Premature track
terminations due to occlusion form a traffic “sink” – a lo-
cation where many tracks stop. Of course, it is possible
for a single vehicle to become occluded and reappear again.
However, these locations may be difficult to identify with
high confidence without other information, such as the road
network. Fortunately, we can easily work around this prob-
lem by just waiting long enough for more tracks to enter the
source and leave the sink.

The dynamic occlusion map is essential in detecting
sources and sinks reliably. Source detection begins by tak-
ing all tracks that we have estimated (by the end of the se-
quence or a sliding temporal window), and computing the
distance from the starting point of the track to the nearest
occluder pixel. If this distance is ”small“, we record a leave-
occlusion event at the track’s starting location. The defini-
tion of ”small“ depends on the accuracy of the estimated
occlusion map. In our work, we have used a value of 20
pixels (15 meters on the ground).

All the leave-occlusion events are then clustered in the
(x, y, x′, y′) space, where (x, y) are the image coordinates
of an occlusion event, and x′ = x+ c · vx, y′ = y + c · vy ,
where vx, vy is the moving direction of the associated track.
The constant c is used to give an appropriate scaling to the
direction vector, and it is set to 20 in our experiments. Ag-
glomerative clustering is used for this task: initially a cluster

is created for each event, and the closest clusters are repeat-
edly merged until the distance between them reaches a max-
imum. The distance between two clusters is the Euclidean
distance between the cluster centers. The only parameter
of this clustering technique is the stopping criterion. In our
work, we have used a value of 20 pixels. Note that due to
the moving camera, the occlusion map is dynamic, and the
occlusion events, while localized, will not be generated at
a single point. The resulting clusters are the desired traffic
sources.

Sink detection proceeds similarly, the only difference be-
ing that now we compute distance from the ending point of a
track that has been declared terminated by the tracking algo-
rithm. If this distance is small, we record an enter-occlusion
event. After clustering these events we get the desired traffic
sinks.

For efficiency, a distance transform is computed for an
occlusion map. All the required distance calculations then
only require a look up operation. To put this procedure
into perspective, in a 801x233 sequence of 200 frames, we
recorded 50 leave-occlusion events and 35 begin-occlusion
events. After clustering, 4 sinks and 7 sources are produced.
See Figure 4 for an illustration.

3.4. Source-Sink correspondence

After estimating sources and sinks, we need to know
which sink corresponds with which source. Knowing this
correspondence, we can then take the sequence of tracks
entering the sink (becoming occluded) and align it with a
sequence of tracks leaving the corresponding source (reap-
pearing). The difficulty of this correspondence problem de-
pends on the complexity of the occlusion. An occlusion
where one sink is connected to more than one source (a one-
many relationship), is considerably more difficult to handle
than an occlusion with a one-one relationship between sink
and a source.

In this work, we assume a one-one correspondence be-
tween sources and sinks, which is often satisfied in aerial
surveillance imagery over urban areas. This does not mean
that all vehicles entering a sink must leave a corresponding
source. It is possible that a vehicle parks behind the occlud-
ing building, or more simply that a tracker does not track
every vehicle entering / leaving the occlusion. However,
we do expect that most vehicles entering a sink will in fact
reappear at the source.

Using this assumption, we find a corresponding source
for every sink by setting up a weighted bipartite graph
matching problem, and solving it using the Hungarian al-
gorithm. The pairwise matching similarity is defined as:

cij = C1 ∗ (d1 + d2) + (C1/d) + C2 ∗ s(i) ∗ s(j) (1)

where d1 is the dot product of the direction of traffic enter-
ing the sink with the direction of traffic leaving the source,
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Figure 4. Example of source and sink detection. The top figure
shows all occlusion events and the direction of travel for each
one. The middle figure shows the resulting clusters – sources and
sinks. Red circle indicates enter-occlusion and green square indi-
cates leave-occlusion. The bottom figure shows correspondences
between sources and sinks.

d2 is the dot product of the direction of sink to source with
the direction of traffic entering the sink, d is the distance
from sink to source, s(i) is the number of occlusion events
(tracks) in cluster i, and C1, C2 are constants that weight
each factor appropriately and make the matching similar-
ity an integer. In our experiments, C1 = 1000, C2 = 100.
The Hungarian algorithm will return an assignment of sinks
to sources that maximizes this similarity. Furthermore, we
require that the angle between the direction of traffic en-
tering the sink and leaving the source is less than 60◦. A
source-sink pair that does not satisfy this is removed from
consideration. See Figure 4 for an illustration.

3.5. Sequence alignment

With an established correspondence between a sink and a
source, our task is to match the sequence of tracks at the sink
to the sequence of tracks at the source. By matching two se-
quences, and not two sets (as is customary with a Hungarian
algorithm), of tracks we are applying an additional ordering

constraint to solve the track linking problem. Using this ad-
ditional constraint is essential when motion prediction fails
(due to long occlusion) and/or when the appearance of the
tracked objects is not very discriminative.

To solve the sequence alignment problem, we use a stan-
dard dynamic programming algorithm that is similar to Dy-
namic Time Warping and has been extensively used in com-
putational biology. Let the sequence of tracks at the sink
be X = x1x2 · · ·xm, and let the sequence of tracks at
the source be Y = y1y2 · · · yn. An alignment of the two
sequences is a set of ordered pairs of tracks in X and Y
such that there are no “crossing” pairs. In other words, if
(i, j), (i′, j′) is in our solution, and i < i′, then j < j′ [11].
This often holds in practice. To handle the case of a ve-
hicle becoming out of order during the time it is occluded,
we allow some tracks in X and Y to not match at all. For
each such “gap”, a penalty of δ is incurred. For every pair of
tracks that do match, there is a matching cost ξxiyj . The cost
of an alignment is the sum of its gap and matching costs. A
dynamic programming algorithm minimizes this cost with
the following recurrence [11]:

f(i, j) = min[ξxiyj
+ f(i− 1, j − 1), δ + f(i− 1, j),

δ + f(i, j − 1)] .

(2)

In our domain, the matching costs ξ are computed from 4
terms, appearance term α, size term β, kinematic term γ,
and feasibility term τ :

ξxiyj
= τ(xi, yj) ∗ γ(xi, yj) ∗ (α(xi, yj) + β(xi, yj)) (3)

The feasibility term is defined as

τ(xi, yj) =

{
1 link yj with xi is feasible
∞ otherwise (4)

where linking yj with xi is feasible if yj becomes visible
at a time after xi becomes occluded, and given the distance
and time between xi and yj , if the acceleration from xi to
yj is physically possible (≤ 10m/s2).

The kinematic term is defined as

γ(xi, yj) = min(|t′j − tj |, G)/G (5)

where t′j is the predicted frame number of track xi at the
first location of yj , and tj is the actual frame number of
track yj at its first location. By clamping this time dif-
ference to G, the kinematic cost becomes unimportant for
sequences of tracks which stop behind an occlusion, or oth-
erwise have unpredictable motion. At the same time, if the
motion prediction succeeds, the appearance and size terms
become unimportant. The parameter G is set to 8, which
corresponds to a time difference of 4 seconds in our im-
agery.
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The appearance term is defined as

α(xi, yj) = min(D(h(xi), h(yj)), A)/A (6)
D(p, q) = 0.5 ∗ (DKL(p||q) +DKL(q||p)) (7)

where DKL is the Kullback-Leibler divergence, and h(·)
is a probability distribution of image intensity on the fore-
ground of the object. This distribution is calculated from a
histogram of 16 bins. The parameter A is estimated as the
maximum value of D(p, q) in a training set of 11,208 ap-
pearance term computations. In our experiments, this value
is 3.5.

The size term is defined as

β(xi, yj) = min(|s(xi)− s(yj)|, B)/B (8)

where s(·) is the median size of the tracked object. The
parameterB is estimated as the maximum value of |s(xi)−
s(yj)| in a training set of 11,208 size term computations. In
our experiments, this value is 17.

The parameter δ controls the likelihood of tracks becom-
ing out of order. When it is 0, tracks before and after oc-
clusion can be matched with an arbitrary number of gaps.
When it is high, the first track entering an occlusion will al-
ways match the first feasible track leaving an occlusion. In
our experiments, we have empirically determined the value
of δ to be 0.40.

The alignment of tracks which minimizes the cost func-
tion f(i, j) is the solution to our tracking problem. That is,
by merging those tracks the vehicle continues to be tracked
after the occlusion.

4. Computational Complexity and Implemen-
tation

The computational complexity of the sequence align-
ment algorithm is O(nm), where n,m is the number of
tracks in a sequence. In practice, this number is often small,
so the algorithm is quite efficient. We have implemented
the algorithm just presented in C++. The implementation is
available on the author’s website [1].

5. Results
We have evaluated the proposed track linking algo-

rithm on sequences captured from an airborne sensor. The
sequences come from the publicly available CLIF 2006
dataset [2]. This dataset is captured at roughly 2 Hz, and
it is in grayscale. It is an example of persistent surveillance
imagery, where the airplane makes several circular flyovers
around the campus of Ohio State University.

Our database of geo-referenced 3D models has 90 mod-
els of buildings that were downloaded from Google Earth.
For the geo-registration step of our camera pose estimation,
we have used a reference image from USGS [4]. Camera

Figure 6. Correctly linked track by both the proposed algorithm
and Hungarian algorithm. This is a short occlusion case, where
motion prediction successful. This shows the algorithm works just
as well in these cases. The top row shows the vehicle before occlu-
sion and the bottom row shows the same vehicle after occlusion.

calibration was achieved by manually selecting correspon-
dences and performing bundle adjustment.

A baseline tracker [13] was used to estimate tracks in 5
sequences. The sequences are 150-200 frames long each,
and roughly 500x200 pixels in size. We have selected those
subregions of CLIF for which 3D models are available. In
sequences 1 and 3, vehicles makes a stop while being oc-
cluded. Fragmented tracks in all sequences were manually
identified in the tracking output. After running the proposed
algorithm on each sequence, we manually verified the cor-
rectness of the track linking suggested by the algorithm.
Ideally, all of the fragmented tracks identified earlier would
be correctly merged together. The results can be seen in
Table 1.

We compared the performance of the proposed sequence
alignment to the widely used Hungarian algorithm. The
matching cost used in the Hungarian algorithm was exactly
the same as the one used in sequence alignment, but scaled
and rounded to an integer value. The results of this compar-
ison can also be seen in Table 1.

Examples of linked tracks in the sequences we tested can
be seen in Figure 5, 6, 7, and 8. The test sequences, and
other relevant data used in evaluation, are available on the
author’s website [1].

5.1. Discussion

The results show that the proposed algorithm is effec-
tive in linking tracks through occlusions. More than half
of the fragmented tracks were successfully linked together.
In contrast, the performance of the Hungarian algorithm is
quite poor, with only a small number of tracks correctly
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Proposed Algorithm Hungarian Algorithm
Fragmented Correctly Incorrectly Correctly Incorrectly

Tracks Linked Linked Linked Linked
Seq 1 9 5 2 2 7
Seq 2 4 3 3 3 4
Seq 3 3 1 6 1 7
Seq 4 2 1 2 1 3
Seq 5 6 4 1 3 3
Sum 24 14 14 10 24

Table 1. Quantitative evaluation of the proposed track linking algorithm.

Figure 5. Linked tracks by the proposed algorithm (left) and Hungarian algorithm (right). Note that in this sequence, the vehicles stopped
while being occluded. The only correct link by the Hungarian algorithm is the leftmost one. The top row shows vehicles before occlusion
and the bottom row shows the same vehicles after occlusion.

Figure 7. An example where both algorithms fail to link with the
correct track, which is indicated with a dashed line. The top row
shows vehicles before occlusion and the bottom row shows the
same vehicles after occlusion.

Figure 8. Another example of a linked track by the proposed al-
gorithm. The top row shows the vehicle before occlusion and the
bottom row shows the same vehicle after occlusion.

linked and with a significant number of ID switches (incor-
rect links). Because we are using the same matching cost
between tracks in both the sequence alignment problem and
in weighted bipartite graph matching, we conclude that the
ordering constraint is in fact responsible for the increased
performance.

The most common type of error in the solution to the
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sequence alignment problem is a track paired with a track
that is next to the correct one (either ahead by one, or earlier
by one). This can happen when the tracker does not track
all vehicles entering or leaving an occlusion, and there is
an appearance ambiguity as to which vehicle is the correct
match. For example, when two dark colored cars are adja-
cent in a sequence, it is not clear how to choose the correct
one. This does not happen when the appearance of vehicles
is sufficiently diverse. In fact, the variation in appearance
of vehicles acts like a synchronization mechanism – it pre-
vents the error in one assignment from accumulating and
throwing off the whole sequence.

6. Conclusions
Our primary contribution is a novel use of 3D scene

structure to improve tracking performance for objects mov-
ing through long occlusions, and it is especially suitable
when motion prediction fails and/or when the appearance
of objects is only weakly discriminative. The key feature
of the proposed solution is the application of an ordering
constraint, which stipulates that the sequence of tracks be-
coming occluded is approximately the same as the sequence
of tracks becoming visible. A dynamic programming algo-
rithm is used to solve the sequence alignment problem.

The algorithm was evaluated on a vehicle tracking task
in an aerial surveillance video. The results show excellent
performance in terms of decreasing track fragmentation and
outperform the Hungarian algorithm.

In the future we plan to consider the sequence alignment
problem when multiple sources can be associated with one
sink. We believe the knowledge of the road network is es-
sential in this case.
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