

PROBLEM

- 100 megapixel imagery, 1.25 frames / second, grayscale, 0.30 meters / pixel resolution
- Track vehicles as long as possible, including through stops

APPROACH

Detection Based Tracker	tracklots	Correspondence	tracks	F
 Detections from back- 				
ground subtraction		unmatched —	→ initialize –	
 Prokaj et al., CVPRW 2011 		matched —	→ update –	

FRAME-FRAME TRACKER

- 1) Sample N times from the motion model
- 2) Regress each sample to find displacement to true target state
- 3) Choose the largest cluster of target state estimates

REGRESSION

Persistent Tracking for Wide Area Aerial Surveillance Jan Prokaj and Gérard Medioni (USC)

Frame-Frame Tracker

- Target state regressor

REGRESSION

METHOD

- Non-parametric, Nadaraya-Watson kernel-weighted average
- Generate labelled examples from the tracklet (Δx , Δy , $\Delta \theta$)
- Kullback-Leibler divergence based kernel

VALIDATION

- The target must be at least partially visible for the regressor output to be valid
- number of samples, provided it is greater than some minimum

MOTION MODELLING

- Learn a vehicle motion model from a small subset of tracking ground truth
- Predict with a multi-variate RVM, combined with a velocity-dependent covariance

Vehicle trajectory

TRACKER CORRESPONDENCE

- •Associate tracklets with tracks by considering their overlap and direction of motion
- •When frame-frame tracker fails, re-initialize it with the associated tracklet

FAILURE DETECTION

- When the two tracker trajectories diverge, need to decide which tracker to trust
- Logistic regression classifier decides which tracker to trust using tracker confidence features (trained offline)

MOTION VALIDATION

Shape mask

Frame *t t+1*

 $f(\mathbf{x}_0) = \frac{\sum_{i=1}^N k(\mathbf{x}_0, \mathbf{x}_i) \mathbf{y}_i}{\sum_{i=1}^N k(\mathbf{x}_i, \mathbf{x}_i) \mathbf{y}_i}$ $\sum_{i=1}^{N} k(\mathbf{x}_{0}, \mathbf{x}_{i})$

$$k(\mathbf{x}_0, \mathbf{x}_i) = e^{-\lambda \operatorname{KL}(\mathbf{x}_0, \mathbf{x}_i)}$$

• Validate the output by binning the target state estimates and choosing the bin with the greatest

Examples of the predictive distribution

Examples of diverging trajectories • Frame-Frame tracker Detection-based tracker

RESULTS

- WPAFB 2009 Dataset
- 1025 frames (a) 1.25 fps (\approx 14 minutes)
- 429 m x 429 m geo-referenced region
- 410 ground truth tracks

	Proposed	Prokaj <i>et al.</i> CVPRW 2011	Pirsiavash <i>et al.</i> CVPR 2012	Reilly <i>et al.</i> ECCV 2010	Detector Only
Recall	0.48	0.41	0.36	0.44	0.57
Precision	0.92	0.97	0.14	0.14	0.08
False Pos. / Frame	1.03	0.35	53.5	65.1	163
False Pos. / GT	0.04	0.01	2.23	2.72	6.81
MODA	0.44	0.39	-1.87	-2.27	-6.25
Swaps / Track	0.20	0.36	1.23	1.31	_
Breaks / Track	0.99	1.77	2.80	3.10	_
ΜΟΤΑ	0.43	0.39	-1.90	-2.30	-
Frames / Second	0.12	19.3		3.80	-

CONCLUSIONS AND FUTURE WORK

Generated trajectories

			-Track 291
			—Track 437
			-Track 256
			-Track 248
			-Track 170
			-Track 16
70	400	407	

Examples of targets successfully tracked through a stop. The left chart shows targets' speed over time, and the image on the right corresponding trajectories.

• Frame-frame tracker combined with a detection-based tracker effectively minimizes reliance on background subtraction and generates tracks of stopping targets, with little ID switching. • Decreasing the computational complexity of the approach is the focus of our future work.