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ABSTRACT

Detecting curved objects against cluttered backgroundshiard problem in computer vi-
sion. We present new low-level and mid-level features tacfiam in these environments.
The low-level features are fast to compute, because theyognam integral image ap-
proach, which makes them especially useful in real-timdiegions. The mid-level fea-
tures are built from low-level features, and are optimizexddurved object detection.

The usefulness of these features is tested by designingeact dietection algorithm us-
ing these features. Object detection is accomplished bgfwaming the mid-level features
into weak classifiers, which then produce a strong classigrg AdaBoost. The resulting
strong classifier is then tested on the problem of detectaagls with shoulders.

On a database of over 500 images of people, cropped to camaith and shoulders,
and with a diverse set of backgrounds, the detection rat@% @hile the false positive

rate on a database of 500 negative images is less than 2%.
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1. INTRODUCTION

Object detection is a fundamental problem in Computer Vis®iven an image or a frame
of a video sequence, a computer needs to identify what abgeetin it, and their locations.
As we have learned over the last several decades of workattkgs very difficult to do for
a machine. Yet, humans can do this task very easily, and asty fecognizing hundreds
of objects every day. What makes this problem difficult?

Largeintra-classvariation. Detecting one instance of an object class is easy, but sseles
for the real world. Take cars for example. In an automotiseon system that is designed
to signal the activation of brakes in dangerous situatibes)g able to detect a blue 2008
Ford Focus will not help when a silver 2006 Toyota Camry appedead. Therefore,
the intra-class variation is a significant concern for anjeobdetection algorithm. The
variation in appearance can be large (Molkswagen New BestleHummer). In the car
industry, there are hundreds of car manufacturers, eactiupinog several models every
year, and each available in many colors. However, therenge#iting in common between
all these cars. Identifying this “something,” a patternd guantifying it is the essence of
object detection.

Viewpoint changes. Most objects look very different when they are rotated, @led
by a large factor. They look different enough to be considerdifferent object. However,
considering each view and scale as a separate object isnadficient. Therefore, a robust
object detection algorithm must keep this in mind.

Occlusion. An object may not be fully visible, but if it provides enouglues that a

human can identify it, an object detection algorithm needdentify it as well. In general,



this means that the algorithm can not have only one way ofirsplthe task. When one
attempt fails, it needs to be able to recover from it, anchaptito solve the problem another
way. In object detection, this translates to using multgidgect properties, or features, that
can be independently calculated on different parts of theabb

[llumination changes. Color, brightness, and shading of an object all change under
different illuminations. One way a good object detectiogoaithm minimizes the effect of
illumination changes is by using gradient information eatthan the raw intensity or color.
This achieves invariance with respect to linear changdtuimination. Nonlinear changes
in illumination, however, are more difficult to solve.

Dynamic object structure. Articulate objects are objects that have a dynamic strectur
as opposed to rigid objects. This includes hands, humankaaimals. These objects
look different even if the above variables are constant. é&xample, a hand with a closed
fist looks different when the same hand is open under the sawpwint and illumination.
Detecting articulate objects requires much more effomtihetecting rigid objects like cars.

Sensor noise. The last, but not least, problem is noise, and the qualitynplif to
the algorithm. Noisy data, or low image contrast, can sigaiftly affect calculations.
Image pre-processing, such as smoothing, can help abetyies problem. Still, an object
detection algorithm should not impose fixed thresholds & c¢hlculations, which cause
chaotic performance. Rather, it should gracefully hankiéefailure of any one part of the
calculation.

Given all these issues, it is clear that object detectioh#lenging. Solving one prob-
lem, such as intra-class variation, usually means pooppadnce on the other problems.
However, each step brings us closer to the ultimate goakwisiwhat matters the most.

In this work, a step is taken in solving the problem of curvbgkot detection. New low-
level and mid-level features are introduced, which do ndéfesdrom background clutter

problem. The low-level features are fast to compute, whicekes them especially useful



in real-time applications. The mid-level features are toindm low-level features, and
are optimized for curved objects. The usefulness of thesteifes is tested by designing an
object detection algorithm. Object detection is acconmgltsby transforming the mid-level
features into weak classifiers, paving the way for boostiag@ng classifier. The resulting
strong classifier is then tested on the problem of head andldéis detection.

In the next section, previous work in feature detection dnjdat detection is discussed.
In Section 1.1.3 the AdaBoost algorithm is reviewed, asalplan important role in the
design of the object detection algorithm used in this worke Tiext chapter describes in
detail the contributions made by this thesis: low-levetdeas, codebook of these features,
and mid-level features. It also describes an object deteetigorithm using these features.
The following chapter presents the experimental setupdstirig the performance of the
features and the results achieved. Finally, this thesibbsed by discussion of the results,

future work, and conclusions.

1.1 Previous Work

Given the fundamental nature of the object detection prabiéis not surprising to see
an extensive work on all aspects of the subject. An imporapect of many object de-
tection algorithms is image features. There are many apgpexto the feature detection,
and feature descriptor problem. The most important of tla@seeviewed in the next sub-
section. Subsequently, previous work in object detecsafiscussed, with one subsection

dedicated to AdaBoost, which is used as an object detedgnitom in this thesis.

1.1.1 Image Features

Image features play an important role in many areas of coenpigion, including corre-
spondence problem, object tracking, and object detecfidmns importance is evident in

the number of works on this issue in the literature. Sincepttaetical application of this



thesis is in object detection, the focus is on works withdezd used in object detection.
But first, what are image features, and what is their role ijecidetection?

A feature is a quantity, usually in high-dimensional spalcat captures some character-
istic of an object. These characteristics can be explidefined, such as color or brightness
gradient, but usually they are implicitly found by a patteznognition technique. The types
of features that can capture this information include watvebefficients, histograms of ori-
ented gradients, and many others. The goal in object deteistio find a pattern of feature
instances in a training set that reliably represent theabbjehen the object is detected in
an unseen image when this pattern of feature instancesmsppea

The design of an image feature is divided into a feature tietealgorithm, and a fea-
ture descriptor algorithm. A feature detection algorithotputs a list of interest points in
an image, then a feature descriptor algorithm takes eachamgecalculates the feature de-
scriptor from a small image patch around it. Using a featwtector is necessary, because
calculating feature descriptors for every patch in the iemaguld not only be computa-
tionally inefficient, but would give a lot of useless infortima. The best features are ones
that occur often and consistently in the same place on thecbbj

The first significant feature detection algorithm is the li$acorner detector [HS88].
For each pixel, it calculates a second moment matrix, whielasures the gradient distri-
bution in a local neighborhood. The “cornerness” is thenraefias the determinant minus
the trace squared. Local peaks in the “cornerness” indib&éocations of interest points.
Since the introduction of this detector, there have beenymariants proposed, including
Harris-Affine [MS02], and Harris-Laplace [MS01], which aseale-invariant.

Another feature detection algorithm was introduced by Ldla@v04]. Here the in-
terest points are local 3D extrema in the difference of Ganspyramid. The extrema

determine the localization and the scale of the interestitpoiThe difference of Gaussian



pyramid is obtained by subtracting two adjacent Gaussiarrdd images, and it is a very
efficient approximation of the Laplacian pyramid.

There have also been many feature descriptors develope@dMI he first, and the
simplest, descriptor used is a vector of raw pixel inteasitn a local image patch. Sim-
ilarity between such descriptors is measured using nom@dlcross-correlation. This de-
scriptor, however, is not invariant to rotation, and thealiggior similarity calculation is not
efficient.

Descriptors based on histograms have been shown to be vecgssiul. The most
famous of these is the SIFT descriptor [Low04]. This degorigtores a distribution of
gradients in a local patch. The histogram quantizes gradibeations and orientations.
Each histogram entry is weighted by gradient magnitudethmitiescriptor is normalized
to unit length to be invariant to linear illumination chasge

One problem with histogram based descriptors is their seitgito background for
features points near the boundaries of an object. This doesatter for objects that are
mostly planar, such as books, cars, or boxes, but it is alsedoncern for articulate ob-
jects like hands, and humans, where the most importantrEsatccur on the boundary.
This problem is illustrated in Figure 1.1, where SIFT dgstnis are used to recognize an
object. When the same object is moved to a different backgtothe number of matches
decreases considerably. This shows that the feature gemsrinclude background infor-
mation, which prevents a recognition of the object in vagylrckgrounds.

This problem was recognized by Mikolajczyk et al in [MZS03The solution pro-
posed there divides the local patch around an interest pamtwo parts, foreground and
a background. The division is along a chain of dominant edglesn, a SIFT descriptor is
calculated for each part separately. During matching, dineground pair of descriptors is
identified as the one with a minimum distance. One problerh thiis algorithm is that it

is not computationally efficient.



Figure 1.1: Object recognition using SIFT descriptors. Wtlee background changes, the
number of correct descriptor matches decreases signifjcant
In this thesis, the descriptors for low-level features agsigned with this problem in
mind. The descriptors are histogram-based, however, ttedrams do not capture the
background information. Also, they are very efficient to gute. This will be discussed

in Section 2.2.

1.1.2 Object Detection

The number of existing object detection algorithms is larggch one performing really
well in some context. While the algorithms differ a lot in tHetails, many of them use

image features at some point in the algorithm, and can bgaared into two approaches.

They are either single detection window based [POP98, SK001, DT05, SMQ7], or

part-based [MPPO1, FPZ03, LLS04, MSZ04, OPZ06]. Each ambrdas its advantages
and disadvantages. A detection window based approachesaljgroffer better detection
speed than part-based approaches, because there is neisuadlgn object’s structure.
Their only concern is to find a pattern in a window. An objecthien detected on a test

image by scanning all possible locations in the image. Pased approaches, however,
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Figure 1.2: Selection of Haar wavelets used in object detect

offer more model flexibility and thus capture more infornoatin a compact representation.
This work is motivated by works across this spectrum, andoirtgmt algorithms from both
approaches will be reviewed.

A general approach to object detection was presented in 9BDHnN this work, an
object class is represented using an overcomplete set afiaeelets. Some of these are
illustrated in Figure 1.2. The value of each wavelet is aedéhce in average intensity
between different regions. The descriptor of a detectiomdaiv contains these values for
many instances of these wavelets (different sizes anditosaih the window). The dimen-
sionality of the descriptor is reduced to only contain theshpromising wavelets. This is
done by simple statistical analysis. A support vector maeksSVM) classifier is then used
with the reduced descriptors to discriminate between theablslass and background. The
method shows good results on face detection and pedesegiaatibn.

A statistical approach to object detection was demonstratg¢SKO0O0]. A probability
distribution of appearance is estimated for an object adassbackground, and classifica-
tion is made using the likelihood ratio test. Appearance @gleted as a product of class
conditional probabilities of several visual attributesich visual attribute is a histogram of
guantized wavelet coefficients at a particular locatiommdetection window. Wavelet co-
efficients capture information in space, frequency, andradtion. The histograms can be
calculated using AdaBoost [FS97] to minimize classifiaagoror. This method is not very
efficient, but results on face detection and car detectiawdhat a large team of simple

wavelet coefficients can capture complex patterns. Thisngiened in the next work.



The AdaBoost algorithm as an object detection tool was maa®tis by the landmark
work of Viola and Jones [VJ01]. Here Haar wavelets are usedesk classifiers. Ad-
aBoost selects the set of weak classifiers that minimizesl#ssification error. The weak
classifiers are organized in a cascade to achieve real-ioedetection. The speed of the
algorithm is possible thanks to a new auxiliary data stngtthe integral image, which
allows fast computation of wavelet coefficients. Given thpaortance of AdaBoost, and its
use in this thesis, this algorithm will be more covered intfec1.1.3. Improvements to
Viola and Jones’ algorithm have been presented in [LM02, BjM@here additional types
of features were added to the feature pool. These are ratdadlike features, and edge
orientation histograms. These improvements illustrageittportance of good features in
AdaBoost.

Recently, a lot of work has been done on human detection [DZ¥&A06, SMO7].
Dalal and Triggs [DT05] showed that gradient orientatiostbgrams are very useful fea-
tures in this context. They trained an SVM classifier to dimarate between such his-
tograms of human images and background images. This digoachieved state of the
art performance, while being quite efficient. Interestinglhu et al [ZYCAQ6] achieved
the same performance at a significantly larger detectioedixy using a larger variety
of histograms, and implementing the algorithm in a cascasdaBoost framework. The
currently best performance on human detection was achiey¢8MO07], with a two stage
AdaBoost classifier. In the first stage, AdaBoost is used takione low-level features
(oriented gradient responses) into mid-level featurea{stets). In the second stage, these
mid-level features are combined into a strong classifiee détection speed, however, does
not match [ZYCAO06].

All of these approaches show that wavelet coefficientspgrsims, and AdaBoost are

powerful ingredients in a detection window based objectcksin algorithm. When mixed



correctly, state of the art performance is achieved. PresAgork in part-based approaches
to object detection is reviewed next.

Part-based approaches try to model the object as a colheatiparts and relationships
between them. In [MPPO01], a human was modeled as having €, pdrich were manually
determined. Each part was represented as a set of Haar weawefécients. The result-
ing part detector was built using an SVM. Geometric constsaivere applied to detected
parts, before further processing. The parts were combirnyestdring the raw output of
each SVM in a vector. After this, another SVM was trained ossthvectors. This final
classifier learned what combinations of part detectionswuarhto an object detection. The
method was tested on human detection, and showed that ugpiagsabased approach is
advantageous in partially occluded scenes.

A more general algorithm was presented in [FPZ03], wherelgacb is modeled as
a constellation of parts. The number of parts is fixed, butideatity of parts is learned
automatically by the algorithm. Each part has appearaet&tjve scale, and an occlusion
state. Part appearance, part scale, and object shape areddled as Gaussian densities.
The parameters of these densities for the object class inea¢sd using the expectation
maximization algorithm. The parameters for background esemated directly from a
training set. The classification decision is made in a Baesianner. This algorithm is
tested on a variety of objects, and achieves good perforenanc

An improvement over the previous algorithms was introduicefLLS04]. Here, the
identity as well as the number of parts is determined fronmiing. The parts are automat-
ically constructed using agglomerative clustering of im@atches as in [AR02]. This set
of parts is a codebook of local appearance. Each part in tthebook then records possible
locations of the object centroid relative to it. This infation is then used during detection
to perform a generalized Hough transform and vote for thealgentroid. The maxima in

the voting space are found using Mean-Shift Mode Estimafitnis method achieves state



of the art performance on car detection (side view). Thedligatage of this algorithm is
that it requires a segmented training set.

A method similar to [LLS04] was presented in [OPZ06]. Thdatiénce is that the parts
are not average image patches, but boundary fragments®@drirom an edge map. Each
fragment stores possible locations of the centroid as bef@ecause a single boundary
fragment is not very discriminating, boundary fragments eombined to groups of two
or three to form weak classifiers. The response of a weakifitxas a Chamfer distance
of each boundary fragment to an image. A strong classifienes found by AdaBoost.
During detection, as before, the weak classifiers vote ferdalsation of the centroid. The
presence of an object is indicated by a maximum in the votiags. Very good results are
achieved on the Caltech dataset without requiring a segederdining set.

It is clear that the AdaBoost algorithm is an invaluable toobbject detection. It has
been successfully used with detection window based apbesa@s well as parts-based
approaches. Since this algorithm is also used in this thiésssexplained in detail in the

next section.

1.1.3 AdaBoost

The AdaBoost algorithm [FS97] is based on the idea of usimgantof experts for making
a decision. An expert does not have to be a genius, and bectait¢he time. In fact,
the algorithm only requires that an expert is right at led$tf the time. For this reason,
an expert is called a weak classifier. The purpose of AdaBedstfind a team of weak
classifiers and combine their decisions in such a way thatdbelting team decision is
correct every time. The team is then a strong classifier.

AdaBoost is a supervised approach, requiring a trainingvgbtpositive examples and
negative examples of input. Selecting the members of a tedane in an iterative fashion.

The key idea is the reweighting of training examples. IHitjahe weight of each training

10



example is set uniformly. The next member of the team is thekw@assifier that has
the lowest error on the weighted training set. As soon as amewber is selected, the
training examples are reweighted such that the weights oectly classified examples
are decreased. Each member is also assigned a weight thegmamds to its error on the
training set. This loop continues until meeting some cogeece criterion. The algorithm
is illustrated in Figure 1.3.

One of the most important properties of AdaBoost, which wasgd by Freund and
Shapire [FS97], is that if each weak classifier is slightlftérethan random, then the train-
ing error drops exponentially fast. They have also shown tthe decision by the final
strong classifier is identical to the Bayes optimal decisida.

Viola and Jones [VJ01] found a very useful transformatioMdaBoost, the cascade.
This small modification to the algorithm builds several sgaclassifiers in stages that
together have the equivalent performance as a single stlasgifier found by a non-
cascaded AdaBoost. The strong classifiers are arranged ipeling, with each strong
classifier deciding whether to let the input continue in theepne or not. Input that passes
through every strong classifier is classified as positivenv@csely, any input that fails
at any strong classifier is classified as negative, and is oxdidered further by the sub-
sequent strong classifiers. This construction allows thesification process allocate re-
sources more efficiently. Input that is clearly negativésfearly in the pipeline and uses
little computation cost, since the subsequent classifiersal see it. On the other hand,
input that is very difficult to classify uses as much resosirag possible, passing through
every classifier.

This method naturally requires that each strong classifisravery high true positive
rate, such as 99%. The false positive rate does not have tetyelow, however. For

example, if the goal is to have an overall true positive rdt@086 and a false positive rate
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e Given example images (21,¥1),--.,(Z,,yn) where y; = 0,1 for negative and
positive examples respectively.

e Initialize weights wy ; = ﬁ, %

the number of negatives and positives respectively.

for y; = 0,1 respectively, where m and [ are

e Fort=1,...,T:

1. Normalize the weights,
wy 4

Z?:l Wi j

so that w; is a probability distribution.

Wy —

2. For each feature, j, train a classifier hj which is restricted to using
a single feature. The error is evaluated with respect to wy, € =
2 wi |hj(z) — yil-

3. Choose the classifier, h,, with the lowest error ¢;.

4. Update the weights:

Wiy1,i = Wy, ik el_ei
where ¢; = 0 if example z; is classified correctly, ¢; = 1 otherwise, and

3!:‘5_‘

l—fg

e The final strong classifier is:

h(;?;‘) = { 1 ZTZIQEPLE(:‘:) Z %Z?ﬂ:l y

N 0 otherwise

where a; = log EIT

Figure 1.3: AdaBoost algorithm. This figure is courtesy o\ ].

of 0.10%, in a 10 stage cascade, each strong classifier ebdsé a true positive rate of

99% (099'° ~ 0.90), but a false positive rate can be as high as 50800 ~ 0.001).
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2. METHODS

The general approach followed here is that of a typical dljetection algorithm. In the
training phase, a pattern of image features is found froraiaitrg set and in testing, image
features are matched to this pattern. The details of thisoagp, however, differ from the
object detection algorithms reviewed so far. The trainihgge has three stages. In the first
stage, low-level features are computed from raw trainingdes. These low-level features
are designed to be stable and not suffer from problems camsédckground clutter. In
the second stage, mid-level features are built from thelewe! features. The mid-level
features are optimized for curved object detection and s@ichinative enough to be used
as weak classifiers. In the final stage, the mid-level featare combined into a strong
classifier using AdaBoost.

Each stage of the algorithm is explained in the followingtiees. The low-level fea-
tures, curves, are introduced first. In order to build the-feicel features, a codebook of
curves needs to be constructed. This process is explaimeddeSubsequently, the mid-
level features, triplets of curves, are introduced. Thel fit@ge of the algorithm, boosting

of triplets as weak classifiers, closes this chapter.

2.1 Feature Detector

The low-level features used in this work are curves in migdtipcales. These naturally
describe an object’s structure. An object can be thoughsdfeing composed of many
points, or lines, but neither of these is general enoughduige a compact representation.

In addition, curves can be found consistently, becauseghtecof a curve is a point with a

13



high gradient magnitude. This high-frequency contentablet across images. Also, since
curves naturally partition the object’s structure, they ¢teve a high-level meaning and
describe the object’s parts.

In order to achieve high detection speed, the feature didrastage must be fast. Since
this is the first stage, it determines the algorithm’s sp@ad.| A fast detection of curves
is accomplished by creating a convolution filter, which @sgs to the presence of curves
and is designed for a fast convolution using the integrabiena

Integral image is a data structure that stores the sum of pataes in the rectangle
defined by the top left corner of an image and the current pigsgimetimes, it is called
“summed area table” from the field of computer graphics. h b computed in one
pass over an image. The most important property of the iategrage is that it enables
the calculation of a sum of image values in any rectangle ur &aditions. Therefore,
if a convolution filter is composed of a few rectangles, thHisves a rapid calculation of
convolution.

Of course, the goal here is to detect curves, and thus cuees to be approximated
by rectangles. By approximating a curve with rectanglesrehs a tradeoff in accuracy
for speed. A higher number of rectangles better approximateurve’s shape, but does
not provide as much speedup. Another constraint in the dedithe filter is that the sum
of the filter values must be zero. Otherwise, the filter woddgpond even in areas with
constant intensity. The filter must be symmetric as well hst the response is the highest
when the filter is over the center of the curve. The smallessiibe filter size that satisfies
all these constraints is shown in Figure 2.1. The white aesagtements with value equal
to 1, and the dark area has elements with value equal to -1.

Flipping this filter vertically, rotating by 180 and flipping horizontally captures the
response of curves of four different orientations. Moreentations can be captured by ro-

tating the image by 4%or by using a rotated filter in the manner of [LM02], where atet
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Figure 2.1: Curve filter.

integral image data structure is developed. This gives ditiadal four orientations, for a
total of eight. Eight orientations allow us to find the mospwntant curves of most objects.
However, higher precision may be required in certain dosain

To get responses at different scales, the filter is resizeardigly. The only restriction
in resizing is that the properties of the filter are preservedis means that the filter size
must be a multiple of 24x12. As a result of this restrictidmstfilter will not be able to
find curves less than this size. However, this does not cantsd®gms, as curves smaller
than this are not well defined and are not likely to be foundsesiantly across images. In
the current implementation, the number of scales is as tsghoasible. For example, in a
320x240 image, 10 scales would be used.

Given an integral image, and a filter, the calculation of therfresponse is straightfor-
ward. For each pixel in the image, except for border pixelemthe response can not be
accurately calculated, the filter is centered on it, and teasof the big 24x12 rectangle
and small 16x9 rectangle are calculated from the integragien Then the area of the small
rectangle is subtracted from the area of the big rectangld,tlae result is stored as the
response at this pixel. The calculation of the responsesliftarent orientations can be
speeded up by taking advantage of the fact that flipping ttes fiertically or horizontally
only changes the position of the small rectangle. Therefmakeulations of the responses

for opposite orientations of the filter can share the reduthe area of the big rectangle.
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(c) Response of a filter oriented left (d) Response of a filter oriented down

Figure 2.2: Curve filter responses.

The filter responses for an example image are shown in Fig@re &R high filter re-
sponse is indicated by black color, whereas no filter respamadicated by white color.
These responses are only from one scale. It is clear thaedwakeas show high filter re-
sponse. For example, tops of heads have a high responsetfediittér oriented up. Areas
with very little texture show no response at all.

Curve features can be identified as peaks in these respohkegever, there is one
complication. Areas in the image that have weak filter resppoan still appear to be peaks.
Therefore, response images from filters with opposite t¢aiggon are subtracted from each
other, and the absolute value is calculated. The resultivagye will have high values only

for pixels that are oriented in two opposite directions.gixvith weak response from both
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(a) Subtracted filter response (b) (a) enhanced in green and overlapped with input

Figure 2.3: Subtraction of opposite vertical directions.

filters will have values close to zero in the new image. Thislisstrated in Figure 2.3.
Here residual filter responses disappeared and the vetiregtions clearly stand out.

Local peaks in this image are taken as centers of curves. Ripekefined to be a pixel
with a value that is greater than or equal to other values xBangighborhood. The number
of neighbors with equal value as the peak is limited to twosoAthe number of peaks in
the image is limited by thresholding the peak values to beadtl45% of the maximum
response in the image. This avoids including peaks thatatreemny strong. The orientation
of a peak is assigned by comparing the values of the respanesresponse images with
opposite orientations before subtraction. A higher respan one direction than the other
determines the peak’s orientation.

Since peaks can have neighbors with equal values, it islfedsi get multiple peaks
responding to the same area in the image. This is undesirfadbause an unnecessarily
high number of features will slow down processing down the.liThis problem is solved
by clustering the peaks based on their location in the imd&gaks in each direction are
clustered separately. Agglomerative clustering is usetth &stopping criterion of a min-
imum distance between two clusters. When the minimum distérecomes greater than

6 (s+ 1), wheresis a 0-based scale number, the clustering stops. The efféoiscstep
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(a) Before clustering (b) After clustering

Figure 2.4: Effect of feature point clustering (scale=2).

can be seen in Figure 2.4. Itis clear that duplicate peakSl@med out. At the end of this

process, the number of curve features in a 320x240 images/aam 200 to 900.

2.2 Feature Descriptor

Now that the low-level features are identified, there neediseta way to match them across
images. This is accomplished by designing a scale-inviafeature descriptor. The de-
scriptor is an 8-dimensional histogram, storing the nundb@ccurrences of features (ori-
ented curves) in the neighborhood of the feature. Each émtiye descriptor is weighted
by a Gaussian centered on the feature. This means that pbisks to the center of the
neighborhood are weighted more than points at the boundahemeighborhood. Also,
each entry is linearly interpolated into the neighboringsiio avoid histogram bin bound-
ary effects. Finally, the descriptor is normalized to uaeidth.

To achieve scale invariance, the descriptors are calalliatehe scale in which the
feature was found, and the size of the neighborhood is keigutional to the feature scale.
Atthe finest scale, the neighborhood size is 3x3. At coarsses, the size increases to 6x6,
9x9, and so on. The reason for the small neighborhood sipeaitid noisy descriptors. As

the size of the neighborhood increases, the descriptofastatl by features farther away,
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Figure 2.5: Head as a set of curves.

which are less likely to co-occur with the center feature epiag the neighborhood size
small ensures that features that have matching descripgally occur in the same image

areas.

2.3 Codebook

Curves and their descriptors on their own do not have enotgghichinative power for ob-
ject detection. A group of curves, is much more useful. Fanegle, a certain arrangement
of curves naturally describes the omega shape of a head.isTitlisstrated in Figure 2.5.
However, in order to define a group of curves, each curve neeldave a label. A group
can then be defined by the labels of curves in the group. Fanpbea group 3-4-7 indi-
cates a group of three curves: curve-3, curve-4 and cunidié.idea is then to look at the
pattern of groups of curves, rather than single curves.

In our case, assigning a curve a label means assigning thre’'swkescriptor a label.
This is achieved by generating a set of possible descripgash with a unique label at-
tached to it. This set is often called a “codebook of localegvpnce,” or a “visual word
alphabet” in the literature. A curve is then assigned a lalbétis nearest neighbor in the

codebook.
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An optimal number of labels in the codebook is critical. Toany labels will make it
difficult to get consistent matches between images. For piarthe curve on the top of the
head in one image may be labeled 12, and the same curve oh#ystigferent image may
be labeled 15. The labels must be consistent in the imagelagalescribe. A very low
number of labels, however, will not allow the algorithm tstilnguish between different
curves. Having less than eight labels will not even alloviedént orientations of curves to
be distinguished. An optimal number of labels lies somewletween the two extremes.

Determining the optimal number of labels is the same proldsrmdetermining an opti-
mal number of clusters in clustering, where each data sammple€urve’s descriptor. This
is a well studied problem. One solution to this problem it by Tibshirani et al in

TWHO1]. The authors use a heuristic that the optimal nundbefusters occurs when the
decrease in within-cluster dispersion flattens out as tineb&u of clusters is increased. On
a plot of the within-cluster dispersion versus the numberloséters, this is the location of

the “elbow.” The within-cluster dispersion farclusters\\, is defined as

K
1
Z 2— (2.1)
where
Dy = diiv | (2.2)
i,i%cr !

C; is acluster, n, is the size o€, andd;; is the distance between two samples in a cluster.
The approach is to standardize the graph oflQdpy comparing it with its expectation

under a null reference distribution of the data. The optimahber of clusters is then the

the value ofk for which W falls the farthest below this reference curve. This valué of

maximizes the gap statistic, which is

Gapn (k) = Ep{logW} —logW , (2.3)
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Figure 2.6: The gap statistic.

whereE;; denotes expectation under a sample of sif®m the reference distribution.

However, simply looking for the maximum value &&app(k) will only work for well
separated data. More complex data distributions can haxaradocal maxima and the
optimal maximum can only be determined by looking at the pfoBapy(k). This is the
approach followed in this work.

In order to determine the optimal number of labels, 29272 dg®rs, generated from
200 images (positive and negative examples), were clukteféae clustering algorithm
used for eaclk wask-means, wheré& ranged from 2 to 35. The stopping criterion is the
absolute change in cluster centers. When this value drdpsv8001x k= d, whered is
the dimension of each data point, clustering stops. In thautzion of the gap statistic,
the expectation was estimated by an average of 3 referetaeels. The samples in each
reference dataset were generated from a uniform distabuiver a box aligned with the
principal components of the data. The resulting gap statsplotted in Figure 2.6.

It is clear from the plot that the optimal number of labelsétviieen 8 and 33, because

that is the region of the plot with a maximum gap value. It iefasting to note that there is
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Figure 2.7: Image patches corresponding to descriptorsveral clusters.

a local maximum ak = 3, but that one is clearly not the optimal global maximum. fEhe
fore, using a simple search for the first local maximum wouédd,this suboptimal value.
The gap begins to rise againkat 34, but that number of labels is too high, resulting in a
very fragmented descriptor space, which is not good foepattecognition. The beginning
of the maximum ak = 8 is not surprising, because this corresponds to the eigmiapy
directions of our curves. However, only using eight wouldigs descriptors containing
multiple directions the same label as descriptors with aimagry direction. Therefore, the
optimal k for this application is somewhere in between. In this wdk; 18 was used.
With this value ofk, 97% of descriptors fall into one of the eight labels cormgging to
primary curve directions.

This number can be verified by looking at the set of image e ¢hat generated the
descriptors belonging in each cluster. A selection of imaagiehes in each cluster can be

seen in Figure 2/7. Itis clear that patches in a cluster haw@won appearance.
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2.4 Triplets

In this work, groups of three curves, called triplets, areduas mid-level features. Once a
codebook of feature descriptors is constructed, it is easlefine these. For example, one
triplet can be defined as 3-4-7, which means it is a group ofez@t curve-4, and curve-7.
This simple definition, however, is still not discriminagienough to be used directly. A
tripleta— b — c occurs in a multitude of geometric configurations in imagéserefore, the
definition of a triplet is augmented by several geometriqoprties. These are calculated

from the triangle, where a vertex corresponds to the looaiia curve. The properties are:

e Two angles defining the triangle orientaticm (a2). One angle is not enough, due

to a mirror image ambiguity.
¢ Internal angles of a triangl§(y).
e Normalized size of one side of a triangle.
e Normalized coordinates of each vertex of a triangle.

These are summarized in Figure 2.8. While this set of prageeis redundant in describing
the geometry of a triplet, it provides flexibility in calctilag the geometric similarity of
two triplets.

In order to achieve correct matching of geometric propsrietween triplets, for any
triplet defined bya—b—c, a < b < c. This constraint ensures that, for example, the internal
anglef in one triplet is compared to the corresponding internal@imganother triplet. One
implication of this constraint is that a triplet must be defirby 3 different curves — triplet

3—-5—-5is not allowed, for instance.
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Figure 2.8: Geometric properties of a triangle formed byifalét.

2.5 Boosting

Triplets are easily transformed into weak classifiers. dadure response of the weak clas-
sifier is a minimum distance of a triplet to an image. Thisalise measures the geometric
similarity between the triplet of the weak classifier to kg in an image with the same
label. If there is no such triplet in an image, the distandarred is infinity. Formally,

geometric similarity between two tripletsa1 _p1 1 andta_p2 2, is defined as

[Xa1 — Xa2l| + [[Xb1 — Xp2|| + [|[Xc1 —Xe2|| @l =a2,bl=b2 cl=c2
d(Tar—b1—c1,Ta2-b2-c2) =
0 otherwise

(2.4)
wherex denotes the location of a curve in normalized coordinaj@d]). Using curve
locations in similarity calculations implies that classdiion is done in a detection window.
This is intentional, because the geometric location ofdtiis significant. It helps to avoid
false matches between triplets. For efficiency reasonsegm@ometric properties of a pair
of triplets are checked before even calculating the forneangetric similarity. If any of
these properties are not satisfied, the distance returnadtesnatically infinity. These

properties are:
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Scale difference between corresponding curves is

ay difference< §.

a difference< §.

H TU
B difference< .

H Tt
y difference< .

Normalized size differencg 0.10.

Given the triplet distance to an image as a feature resp@ngeak classifier can be
trained to discriminate between two classes of exampleb, avi accuracy of 51-75%. In
training the weak classifier, examples where the featungorese is infinity are ignored.
This weak classifier is of the form:

() = 1 if pfr(x) < pe6 (2.5)
0 otherwise
where p; indicates the polarity of the inequality sigé, is the classification threshold of
the classifier, and; (X) is the feature response. Hetés a detection window in an image.

Using the AdaBoost algorithm, a strong classifier can be bwin a set of weak clas-

sifiers. AfterT iterations of the algorithm, the strong classifier is of tbent:

HX) = 1if ylgade(¥) > eyl o 2.6)

0 otherwise
whereq; is the selected weight for classifilr(x), andc is a threshold.
The AdaBoost algorithm works best with a very large featuwrelpldeally, all possible
triplets are considered as weak classifiers. However, shre@umber of possible triplets

is theoretically infinite, and practically very large, ndk @iplets can be included in the
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feature pool. Therefore, a careful triplet selection pescies employed. Initially, the set
of available triplets is generated dynamically from thertirag set. For each image in the
training set, curves are extracted, and all valid combamatof 3 curves in the image are put
in the feature pool. Valid combinations of curves must hadédf8rent labels, and the scale
difference between the curves mustdd.. In order to consider as many training images
as possible and achieve a diverse set of triplets, a tripleciuded in the feature pool only
if its geometric similarity to other triplets with the samakl already in the feature pool
exceeds a threshold.

The resulting feature pool is still relatively large and qmrtationally intensive for Ad-
aBoost. It also contains many triplets that have a responsenty one or two images.
In general, AdaBoost can work with these features, but ictpre, these present serious
overfitting problems. Therefore, the pool is filtered asdals. For each triplet, its re-
sponses oR positive and\ negative examples in the training set are calculated anddsor

in ascending order. Then, a strength score of a tripl&t), is calculated using

P+N-1

SUB j; s(j)

(i) = px(P—j) J<P
—px(j—P+1) otherwise

wherepis 1 for positive examples andl for negative examples. The lower the score, the
weaker a triplet is. The score can be negative. Those tsiplett have a score less than
0.25 times the maximum possible score are removed from #iare pool. Similar feature
pool optimization has been done in [LKWO06]. This final featpool is used in AdaBoost
to train a strong classifier.

Once AdaBoost completes, the resulting strong classifietbeaapplied on any detec-

tion window. First, the low-level features are extractecheif, each triplet in the weak
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classifier is matched to possible triplets in the window. Tégponse of a triplet is the
minimum geometric distance to matched triplets. Based enmtbak classifier threshold
and polarity, the response is classified as positive or hegathe strong classifier makes
a decision based on the sum of the responses of all triplets.

In a 320x240 image, thousands of detection windows are deresil. As a result, multi-
ple overlapping windows can be classified as a positive artlmm object of interest. These
detections are cleaned up by sorting the windows by theginesf the classifier response,
and calculating the overlaps of each window. If the area efoerlap is greater than 50%

of the detection window, the overlapping window is removed.
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3. RESULTS

The algorithm was evaluated on a head and shoulders det¢atk. The positive training
set consisted of 527 images of people from the front viewpjgea to contain the head and
shoulders, and centered in the image. The negative tragghgonsisted of 7,335 images
of anything but people. Triplets in the feature pool wereggated from a random subset
of 14 images from the positive training set. This featurelmomtained 172,000 triplets.
After feature pool optimization using the strength thrddhthe feature pool was reduced
to 25,886 triplets. This optimization was based on a randetro§ 57 positive and 57
negative images.

Only one AdaBoost cascade stage was trained for the purpbaégorithm evaluation.
The training performance was monitored on a small valichasiet of 57 positive and 57
negative images. Training was stopped after the strongikrsachieved at least 90% true
detection rate and less than 4% false positive rate on thisAsea result, the final strong
classifier contained 85 weak classifiers (triplets). Thealadr of the first few triplets
chosen by AdaBoost is shown in Figure 3.5.

The testing set consisted of 500 positive images and 50Giuegaages. In a typical
183x145 test image, there were about 330 detection windested. A positive image was
classified correctly if at least one detection window over tiead was positive. Similarly,
a negative image was classified correctly if no detectiordeimwas positive. The result-
ing true positive detection rate was 90% while the false thasrate was 2%. Example
detections are illustrated in Figure 3.2. Examples of d&rmon images with multiple

people are shown in Figures 3.3 and|3.4. False positivesalsé hegatives can be seen
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Figure 3.1: Examples of correct detection from an opposée/point (not trained on).

in Figure 3.6. Post-processing of overlapping detectiamdaivs was turned on except for
detection in images with multiple people. This was becanskeis task the post-processing
algorithm did not work well, and removed the correct detattivindows. The number of
scales tested was reduced as well in this task.

In order to verify that the object detection algorithm isngsbbject’s curves to make
a decision, the algorithm was also run on images with peapia the back view. This
viewpoint was not present at all in the training set. Howgetlee set of curves from the
back-view is roughly the same as the set of curves in the frmw. Therefore, the algo-

rithm should be able to work here as well. These results are/sltin Figure 3.1.
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Figure 3.2: Examples of correct detection in a testing set.
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Figure 3.3: Examples of detection on images with multiplegie.
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Figure 3.6: Examples of false negatives and false positives

32



4. DISCUSSION

It is encouraging that significant performance was achigvigdless than 100 triplets. This
is compared to hundreds of Haar wavelets necessary to aelyudetect a face. It is clear
that features which do not heavily depend on intensity ckfiees are useful.

It is interesting to see that the first triplets selected byaBdost correspond to the
natural curves on the boundary of a head. The first two tspbetpture the top curve,
which stretches from the the left ear to the right ear. Thedttriplet makes the connection
between a head curve and a shoulder curve. The fourth tdpjetires a curve on the right
side of a head.

The true positive rate was 90% and the false positive rate2#asThis result is very
encouraging, considering that the images tested had asdiget of backgrounds, and the
algorithm is using only very simple features. It does noetako account local brightness
variations at all. This is confirmed further by the detecti@m a viewpoint not present in
training. Learning an object’s shape rather an appearaines the algorithm a little bit of
viewpoint invariance.

It is clear from the correct detection examples, that theatian in appearance is
huge. There are people with light/dark skin, with/witholagges, with/without hats, with
long/short hair, with light/dark hair, even in a small vayief configurations (facing left/right).
Haar wavelets, or other features that use brightness irgbomdirectly are not able to cap-
ture this variation in a compact form. The features intratlin this algorithm can, because

they look at object’s structure rather than appearance.
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The failures of this algorithm are often a result of contgastblems, where curves in
the image are not clearly evident. Also, some of these imagesignificantly blurred,
which results in a very weak structure that is not capturethieyalgorithm. Loosening the
thresholds in the algorithm can help alleviate this proQlbut it inevitably results in more

false positives. Solving these problems is an opportueityuture work.
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5. CONCLUSIONS

New low-level and mid-level features designed for curveptobdetection were presented.
These features capture the object’s structure rather thpeamance and thus do not suffer
from the background clutter problem. The low-level featuage fast to compute, which
makes them especially useful in real-time applicationse d-level features are built
from low-level features, and are optimized for curved obpstection.

Additionally, an object detection algorithm using thesattees was designed to evalu-
ate the features’ usefulness. This was accomplished bgftianing the mid-level features
into weak classifiers. The results on head and shoulderstawieshow a promising direc-
tion for detecting curved objects against cluttered baolkgd, where the features on the

object’s boundary are important.
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