
EXPLOITATIONOFWIDE AREAMOTION IMAGERY

by

Jan Prokaj

A Dissertation Presented to the
FACULTY OF THE USC GRADUATE SCHOOL
UNIVERSITY OF SOUTHERN CALIFORNIA

In Partial Fulfillment of the
Requirements for the Degree
DOCTOR OF PHILOSOPHY
(COMPUTER SCIENCE)

August 2013

Copyright 2013 Jan Prokaj

Dedication

To my family. Ďakujem Vám za Vašu nekonečnú podporu.

ii

Acknowledgments

This dissertation would not have seen the light of day without the guidance of my advisor

Professor Gérard Medioni. Thank you for your patience and support, especially when I was

not doing so well.

Thank you Professor Ram Nevatia for agreeing to serve on my guidance committee, for

your willingness to serve on my dissertation committee at the last minute, as well as for your

comments.

Thank you Professor Shri Narayanan for agreeing to serve on my dissertation committee

and for your comments.

Thank you Professors John Wilson and Fei Sha for agreeing to serve on my guidance

committee and your advice.

Thank you Sheila Vaidya, Lawrence Livermore National Lab, for funding my Ph.D. study.

I would also like to thank my fellow IRIS lab members that I got a chance to interact with

and that made my stay at USC more enjoyable. Special thanks to Xuemei Zhao and Dian

Gong. Thanks for the pizzas, wine, real Chinese food, and so much more.

iii

Table of Contents

Dedication ii

Acknowledgments iii

List of Tables vii

List of Figures viii

Abstract xi

Chapter 1: Introduction 1
1.1 Exploiting WAMI . 4

1.1.1 Problem Statement . 6
1.1.2 Challenges . 8

1.2 Outline . 10

Chapter 2: Mosaicking 12
2.1 Related Work . 15
2.2 Approach . 18

2.2.1 Estimating PAM . 19
2.2.2 Intensity correction . 24
2.2.3 Complexity . 26

2.3 Results . 27
2.4 Conclusions . 36

Chapter 3: Video Stabilization 37
3.1 Related Work . 38
3.2 Approach . 42
3.3 Results . 44
3.4 Conclusions . 45

Chapter 4: Tracking 48
4.1 Related Work . 50
4.2 Approach . 52

iv

4.2.1 Detection . 53
4.2.2 Tracking . 54
4.2.3 Problem formulation . 55
4.2.4 Segmenting Detections . 56
4.2.5 Probability Distributions . 59
4.2.6 Tracklets from detections . 61
4.2.7 Occlusion handling . 64
4.2.8 Track Linking . 64

4.3 Results . 65
4.4 Conclusions . 70

Chapter 5: Persistent Tracking 71
5.1 Related Work . 73
5.2 Approach . 76

5.2.1 Regression Tracker . 78
5.2.1.1 Non-Parametric Regression 82
5.2.1.2 Features for Regression . 85
5.2.1.3 Motion Modelling . 88

5.2.2 Tracker Correspondence . 89
5.3 Results . 90
5.4 Conclusions . 93

Chapter 6: Using 3D Scene Structure to Improve Tracking 94
6.1 Related Work . 96
6.2 Approach . 98

6.2.1 Estimating the Dynamic Occlusion Map 100
6.2.2 Tracking . 102
6.2.3 Estimating sources and sinks . 103
6.2.4 Source-Sink correspondence . 104
6.2.5 Sequence alignment . 106
6.2.6 Computational Complexity and Implementation 110

6.3 Results . 110
6.4 Conclusions . 114

Chapter 7: Activity Recognition 115
7.1 Related Work . 118
7.2 Approach . 120

7.2.1 Problem Statement . 120
7.2.2 Estimating tracks . 121
7.2.3 Tracklets from the tracking module 121
7.2.4 Activity Representation Using ERM 123
7.2.5 Activity Inference . 125

7.2.5.1 Example I: Simple Activity 126

v

7.2.5.2 Example II: Composite Activity 126
7.2.5.3 Example III: Multiple Actors Activity 128
7.2.5.4 Example IV: Geospatial Activities 129

7.3 Results . 131
7.3.1 Real (CLIF) dataset . 131
7.3.2 GPS trajectory dataset . 135

7.4 Conclusion . 136

References 137

vi

List of Tables

4.1 Conditional probability distribution p(oti|yti) 59

4.2 Conditional probability distribution p(yti |yt−1
j) 59

4.3 Comparison of tracking algorithms on real data 68

4.4 Comparison of tracking algorithms on synthetic data 68

4.5 Effect of sliding window size on tracking performance 69

5.1 Comparison of tracking algorithms on a sequence with light traffic 91

5.2 Comparison of tracking algorithms on a sequence with heavy traffic 91

6.1 Quantitative evaluation of the proposed track linking algorithm 111

7.1 ERM representation . 123

7.2 SQL: "Loop" . 126

7.3 SQL: "Visit" . 128

7.4 SQL: "Source" . 129

7.5 SQL: "On-road-X" . 129

7.6 Confusion Matrix (Real Data Set) . 133

7.7 Confusion Matrix (GPS Data Set) . 134

vii

List of Figures

1.1 Unmanned aerial vehicles . 2

1.2 Recent sensors operate at city scale resolution. 3

1.3 Camera array for capturing wide geographic areas from an aerial platform . . . 4

1.4 The process of extracting semantics from wide area motion imagery 7

2.1 Camera array vs. virtual camera . 13

2.2 Tessellation of R2 with respect to an image of width w and height h 20

2.3 Effect of the sampling grid size P on mosaicking accuracy 29

2.4 Effect of PAM complexity on mosaicking accuracy 30

2.5 Comparison of different deformation models 30

2.6 Effect of training set size on mosaicking accuracy 31

2.7 Mosaicking accuracy with respect to fixed/varying homographies 33

2.8 Stabilization accuracy with respect to fixed/varying homographies 34

2.9 Intensity correction results . 35

2.10 Detailed mosaicking results . 35

3.1 Image coordinate used for stabilization evaluation 46

3.2 Stabilization accuracy . 46

viii

4.1 Multi-object tracking with tracklets . 53

4.2 Graphical model structure . 57

4.3 Effect of performing a detection segmentation step 58

4.4 Importance of different criteria for validating found tracklets 63

4.5 Sequence used in tracking evaluation . 66

5.1 Overview of persistent tracking . 76

5.2 A regressor is able to output the displacement to the true target's state 80

5.3 A regressor improves target state estimates 82

5.4 Target template as well as the shape mask is learned from 5 examples 86

5.5 Subset of the displaced versions of the template used in regression 87

6.1 Automatically computed occlusion map (right) for the image on the left 95

6.2 Framework for tracking vehicles across long occlusions 100

6.3 Accuracy of the camera pose estimation . 102

6.4 Source and sink detection example . 105

6.5 Comparison of track linking algorithms . 112

6.6 Example of track linking under short occlusion 112

6.7 Example of failed track linking . 113

6.8 Example of track linking . 113

7.1 Recognized "Source of tracks" activity . 116

7.2 Overview of the proposed approach. 118

7.3 An example of "loop" . 127

ix

7.4 Geospatial activity recognition result . 130

7.5 Example of extracted tracklets from the CLIF 2006 dataset 132

7.6 "Loop" activity recognition result on GPS data 134

x

Abstract

Current digital photography solutions now routinely allow the capture of tens of megapixels

of data at 2 frames per second. At these resolutions, a geographic area covering a whole

city can be captured at once from an unmanned aerial vehicle (UAV), while still allowing the

recognition of vehicles and people (for sensors under development). This fact, in tandem

with the availability of increased computational power, has led to the growth of wide area motion

imagery (WAMI).

This imagery opens doors to a lot of applications, for example, in urban planning, security,

and geospatial digital libraries. However, we have found out that this imagery cannot be easily

processed by human operators, just because of its sheer amount. Therefore, we propose that

a paradigm shift is required to enable working with UAV video data. The task of visualization

cannot be simply defined as looking at the imagery. In reality, the pixel stream is a signal rich

with information that must be extracted into a form that is easily processed by a person. The

development of this extraction process falls into the realm of computer vision and is the heart

of this dissertation.

WAMI data is often captured by an array of cameras. Therefore, at the lowest level, we

need an algorithm that takes an array of individual camera images and estimates a high quality

xi

mosaic. We propose a piecewise affine model to handle all image deformations that deviate

from the standard pinhole cameramodel. The results show ourmodel produces better mosaics

than a standard lens distortion model.

Detection of moving objects is not possible with a moving camera. Video stabilization

transforms the mosaicked video stream into one without any camera motion. We propose a

stabilization technique which minimizes the amount of drift and jitter in the stabilized imagery.

The results show our technique has better accuracy compared to widely used techniques.

The next level of processing involves estimating the trajectories of all moving objects, or

"tracking." We propose a tracking algorithm that optimally infers short tracks using Bayesian

networks. These tracklets are then integrated into a multi-object tracking algorithm that

achieves good performance on aerial surveillance video. When coupled with a regression-

based tracker, stopping targets can be handled.

WAMI is often collected over urban areas, where there are tall buildings, and other struc-

tures, which cause severe occlusion that in turn causes significant track fragmentation. To

solve this problem, we propose a method which links fragmented tracks using known 3D

scene structure. Our method outperforms the classic Hungarian algorithm.

In order to enable large scale semantic analysis of WAMI data, higher level algorithms that

determine at least some of the semantics are necessary. Expecting full semantic description of

the scene is unrealistic, but the task can be made easier for a human operator by automatically

determining the most common, or primitive, events or activities. We propose a framework

xii

based on the Entity Relationship Model that is able to recognize a large variety of activities on

real data as well as GPS tracks.

xiii

C H A P T E R 1
Introduction

People have always had a large interest in keeping track of the environment and activities

around them. This monitoring has been primarily driven by defense and security reasons. Un-

derstanding external forces allows one to predict them and take appropriate action to protect

themselves. Early examples of these monitoring "systems" and behaviors are watch towers,

and the construction of castles and forts on hills. One obvious disadvantage of these solutions

is that it required the location of the sensor (usually a person) close to the external force of

interest. This is a problem when it's in an area that is inaccessible, far from the nearest settle-

ment, or dangerous (enemy territory, eye of the hurricane). It limits the amount of time for

corrective action or risks the loss of a human life.

With the advent of photography and aviation, remote monitoring, or remote sensing, has

become possible. By mounting a camera (or other scientific instruments) on an aircraft, one

can take a photograph of the world below from a high altitude, and gain the ability to observe

1

Figure 1.1: Some of the commonly used UAVs are Predator MQ-1 (left) and Reaper MQ-9
(right), both manufactured by General Atomics.

a large geographic area with low risk. Furthermore, this observation happens with a relatively

little time delay for an arbitrary location in the world, on the order of several hours or a day. The

introduction and advancement of satellite technology in the second half of the 20th century

has made remote sensing a non-stop operation.

Another breakthrough in remote sensing has occurred recently with the development of

unmanned aerial vehicles (UAVs). These are small aircraft, often called drones, which are pi-

loted remotely, or flown semi-autonomously. They are much cheaper to deploy than satellites,

have lower communication costs, can fly at high altitudes to minimize chance of detection, or

low altitudes to avoid cloud cover, can produce imagery with various characteristics by flying

in different flight paths or with different camera orientations, can easily change their payload

(new sensor or a new weapon), and can fly for long periods of time. These properties have

made them very popular for reconnaisance. Figure 1.1 shows examples of widely used UAVs.

2

≈100 megapixels

≈1.5 gigapixels

Figure 1.2: At 0.40 meters per pixel, recent sensors can capture a city-scale area at few
frames per second. This resolution makes it possible to observe and track movement of
vehicles. However, computer vision algorithms are needed to automate the process, as it
would take hundreds of analysts to monitor the imagery in real-time.

At the same time as UAVs were developed, research in optics and digital photography has

made significant progress. Current digital photography solutions now routinely allow the cap-

ture of tens of megapixels of data at 2 frames per second. Sensors under development are able

to capture more than 1 gigapixel images at similar frame rates. At these resolutions, a geo-

graphic area covering a whole city can be captured at once, while still allowing the recognition

of vehicles and people (for sensors under development). See Figure 1.2 for an illustration. This

fact, in tandem with the availability of increased computational power, has led to the growth

of wide area motion imagery (WAMI). It is also known as wide area aerial surveillance (WAAS)

imagery, or full motion video (FMV), though the latter term is also used for reconnaisance

videos that are not wide area. This imagery (actually a video) is characterized by its generation

on aerial platforms, low temporal sampling rate, spatial resolution of 0.5 m/pixel or better,

large format (tens of megapixels), and is in grayscale. Furthermore, physical constraints often

3

Figure 1.3: Wide geographic areas are captured by an array of sensors (cameras) from an
aerial platform (left). As a result, every frame of data contains several images, one from
each camera (right).

require that the imagery is captured by an array of smaller sensors sharing an optical center,

rather than one large sensor. This is illustrated in Figure 1.3. All of these characteristics have

non-trivial practical computational implications as will be discussed later.

1.1 Exploiting WAMI

Wide area motion imagery has given us what we wanted: the ability to continuously and in

real-time monitor our world. This ability opens doors to a lot of applications, for example:

4

• Urban Planning. By tracking the movement of vehicles throughout the day, inefficien-

cies in the road network or traffic signalling can be identified and removed, and public

transportation system can be optimized to serve the greatest amount of people.

• Security. A model of normal traffic flow around locations of interest can be inferred,

allowing the detection of unusual vehicle movement. Similarly, vehicle or human activ-

ities known to be potential threats can be automatically recognized.

• Digital Earth. Georeferenced temporal data can be automatically published to geospa-

tial digital libraries, creating a richer picture of the world. For example, one can lookup

the change of geographic features (cities, waterways, highways, etc.) over time, or infer

social behavior at a location of interest from the movement of vehicles or people over

time.

However, we have found out that the data to support these applications, this data which

we were seeking the whole time and that we now have, cannot be easily processed by human

operators. This is easily seen in the reconnaisance context. For a UAV with a relatively low-

resolution video stream on the order of a fewmegapixels (1920x1080), there are already several

(≈ 6) people involved in the operation. On top of that, the video stream is merely used for

real-time visualization to support decision making (called "situational awareness" in defense

circles). This mode of operation is no longer suitable forWAMI data, which is up to a gigapixel

in size. First of all, we cannot even display one frame of the captured video on standard-sized

screens. Assuming a display with 1920x1080 resolution, a grid of 28 screens would be needed

to display one 7680x7560 frame (< 60 megapixels), and with each display measuring 24 inches

5

in width, the grid of screens would be more than 2 meters across. How many people would

be necessary to watch 28 high definition monitors? For a frame of one gigapixel in size, more

than 480 monitors would be necessary, and a wall measuring more than 13 meters across. Is

it possible to integrate everyone's observation in every decision in this environment? Even if

this were achieved, the big picture that the data provides, and which is so valuable, would be

missed, because it would be very hard to "connect the dots" between an activity observed in

one subregion with an activity in another subregion. Therefore, we propose that a paradigm

shift is required to enable working with UAV video data. The task of visualization cannot

be simply defined as looking at the imagery. In reality, the pixel stream is a signal rich with

information that must be extracted into a form that is easily processed by a person. The

development of this extraction process falls into the realm of computer vision and is the heart

of this dissertation.

1.1.1 Problem Statement

The objective of this dissertation is to develop algorithms that automatically process WAMI

imagery to turn it into a more useful, informative form. Depending on the intended appli-

cation, this more informative form can exist at different levels of semantics, from low-level

to high-level. Therefore, the set of algorithms we propose operates in range from low-level

processing to high-level processing and is illustrated in Figure 1.4. As high-level tasks depend

on the results from low-level tasks, the algorithms we propose operate in a pipeline.

6

Mosaicking

Stabilization

Tracking

Track Linking

Activity Recognition

Less semantics

More semantics

loop

Figure 1.4: The process of extracting semantics from wide area motion imagery.

At the lowest level, we need an algorithm that takes an array of individual camera images

and estimates a highly accurate mosaic. This mosaic image is more useful for higher levels

of processing than the individual camera images, because it stores one frame of data in one

piece and avoids camera hand-off logic that would be required otherwise for tracking. Once

mosaicked, the video stream needs to be stabilized so that the motion of objects becomes ap-

parent. During stabilization, the imagery is warped (transformed), such that the motion of the

camera (airplane) is removed. The next level of processing involves estimating the trajectories

of all moving objects, or "tracking." In our datasets, these objects are vehicles, but we are in-

terested in all moving objects in general. This level is important, because moving objects tell

us a lot about what is happening in the scene, and are a foundation for higher levels of process-

ing, such as activity recognition. Track fragmentation should be minimized. Unfortunately,

7

in urban areas, tall buildings, and other structures, cause severe occlusion that in turn causes

significant track fragmentation. This phenomenon is not specific to our tracking algorithm,

but applies in general when the appearance of moving targets is limited, and their motion is

non-linear (unpredictable). We would like an algorithm that mitigates this problem. Finally, in

order to enable large scale analysis, higher level algorithms that determine at least some of the

semantics are necessary. Expecting full semantic description of the scene is unrealistic, it is

better to leave that up to the user, but the task can be made easier for him/her by automatically

determining the most common, or primitive, events or activities. For example, answering the

question "is this vehicle being driven safely?" is answered much quicker if the user has access

to a list of speeding violations, or u-turns.

1.1.2 Challenges

Solving the problems above is essential for exploiting WAMI to support the desired applica-

tions. To do so, there are several computational issues and challenges to overcome:

• Mosaicking affects all subsequent processing (background model estimation, etc.) and

needs to be high quality (no visible seams). At the same time, the mosaic should be phys-

ically possible to enable further computer vision analysis. When cameras vibrate, the

parameters of the mosaic slightly change each frame and may need to be continuously

re-estimated, requiring an effcient algorithm. Furthermore, each camera has different

imaging characteristics, leading to large variation in intensity across the sensor array.

8

• Stabilized imagery should have minimal drift and jitter, which may be challenging to

achieve when camera viewpoint changes significantly over time and there are few feature

correspondences.

• The tracking algorithm needs to scale to a large number of targets while handling their

small size. Small target size limits the complexity of appearance models, leading to

increased ambiguity in tracking. Furthermore, parallax from tall structures often leads

to erroneous moving object detections.

• The tracking algorithm also needs be able to track targets through stops. The commonly

used method of background subtraction can not be used as exclusive means of object

detection.

• Predicting the location of an occluded target becomes nearly impossible when occlu-

sions get long and the target undergoes acceleration (makes turns, stops, etc.). More

scene knowledge, such as the 3D structure is needed to resolve this problem, but esti-

mating this from data is a challenge on its own.

• Activities may occur over different time scales, may manifest themselves as different

sequences of events, and depend on uncertain tracks.

9

1.2 Outline

The contribution of this work is a set of algorithms for processing WAMI that attack the

problems and challenges listed above. Mosaicking of an array of cameras is addressed in Chap-

ter 2, where we also discuss a way to handle the inter-camera differences in bias and gain. In

Chapter 3 we explain our method for video stabilization, followed by a multi-object tracking

algorithm in Chapter 4. Chapter 5 couples this algorithm with a regression tracker to handle

stopping targets. Robust occlusion handling in urban areas using known 3D scene structure

and sequence alignment is detailed in Chapter 6. Activity recognition is described in Chapter 7.

The papers serving as the basis for Chapters 2-7 are listed as follows:

• Chapter 2

J. Prokaj and G. Medioni. Accurate efficient mosaicking for Wide Area Aerial Surveil-

lance. InWorkshop on Applications of Computer Vision, 2012.

• Chapter 4

J. Prokaj, M. Duchaineau, and G. Medioni. Inferring Tracklets for Multi-Object Track-

ing. InWorkshop of Aerial Video Processing Joint with IEEE CVPR, 2011.

• Chapter 5

J. Prokaj and G. Medioni. Persistent Tracking for Wide Area Aerial Surveillance. In

submission.

10

• Chapter 6

J. Prokaj and G. Medioni. Using 3D Scene Structure to Improve Tracking. In IEEE

Conference on Computer Vision and Pattern Recognition, pages 1337-1344, 2011.

• Chapter 7

J. Choi, Y. Dumortier, J. Prokaj, and G. Medioni. Activity recognition in wide aerial

video surveillance using entity relationship models. In International Conference on Advances

in GIS (SIGSPATIAL), 2012.

11

C H A P T E R 2
Mosaicking

Physical limitations and cost in the manufacturing process prevent the production of a single

large lens and image sensor. Therefore, wide area motion imagery data is often captured by

an array of CMOS and cameras, as is illustrated in Figure 1.3. The number of sensors in the

array can vary, but a common number is 6. Even though physically there is no one image of

the scene, it is still desirable to generate one virtually, as if it were captured by a single camera.

This is illustrated in Figure 2.1. Having access to such image, called a mosaic, has at least

two benefits: it makes it easy to see the extent of the geographic area being captured and

thus simplifies UAV control, it avoids the problem of tracking moving objects across several

cameras, which adds algorithmic complexity. One potential disadvantage of this image is that

if it is inaccurate (has visible seams), or physically unrealistic, errors will result in algorithms

that use this image is input. For example, image stabilization will not be possible and there

12

Figure 2.1: One frame of the imagery is captured by an array of cameras (left), while it is
desirable to work with only one image per frame, as if it were captured by a virtual camera
(right).

will be many false moving object detections around the seams. Consequently, high quality and

physically realistic estimation is required.

Even though the cameras in the sensor array are fixed, there may be slight, but noticeable,

changes in the sensor geometry at every frame. These may be caused by vibration or imper-

fections in mechanical mounting. This means that sometimes we cannot rely on a one-time,

offline, estimate of the mosaic, but must re-estimate it online for every frame. Therefore, it is

desirable that the estimation of the mosaic be efficient.

To facilitate the generation of this virtual image, the sensors in the array are arranged so

that they all share one optical center (or center of projection). In other words, the 3D transfor-

mation from the pose of one sensor in the array to another is a rotation (there is no translation

component). This helps, because it is well known [32] that if there is no translation between

two cameras, the image transformation between them is fully described by a homography

13

H = K
′
RK−1, where R is a 3D rotation matrix, K ′ is the calibration matrix of the desti-

nation camera, and K is the calibration matrix of the source camera. By selecting one of the

images in the array as a reference, and estimating homographies between it and the rest of the

images in the array, all images can be "registered", or aligned to a common coordinate frame,

creating our mosaic.

However, this geometry model is only valid for true pinhole cameras, which are not used

in practice. There are additional factors such as lens distortion which corrupt this model.

Therefore, a model withmore degrees of freedom is necessary to accurately register the images.

A common solution to this is to adopt a global lens (or radial) distortion model [80, 75, 74]. We

have observed that in wide area imagery, this model does not accomodate all of the deviations

from the pinhole model and an even more flexible model is needed. We propose a piecewise

affine model to solve this problem. It is able to generate high-quality mosaics by allowing

a non-rigid deformation of the image, and it is able to estimate this deformation efficiently

by carefully selecting a small number of optimization constraints. The results show that our

piecewise affine model has better accuracy compared to the classic radial distortion model

used in previous work.

Geometrical alignment is not sufficient to produce a seamless mosaic. Notice in Figure 2.1

that there is a large variation in intensity across different cameras in the sensor array. Therefore,

intensity alignment is also needed to generate a seamless mosaic. We choose to parameterize

the intensity correction in each camera with a standard linear model (bias and gain). The

estimated intensity corrections show good results.

14

2.1 Related Work

The interest in mosaic computation has a rich history. Some of the early applications include

whiteboard or document scanning [84], video enhancement [58], video compression [37], and

video indexing [36]. In all these applications, what is being mosaicked is a sequence of images

taken from the same camera, which is in contrast to the nature of mosaicking done here, where

the images to be mosaicked come from different sensors. This makes the mosaic estimation

problem more difficult since different sensors potentially have significantly different camera

calibrations and image response functions.

One of the major problems in mosaicking is global alignment of a set of images. Since

homographies are estimated between pairs of images, to generate a mosaic which is generated

from more than two images, several homographies may need to be concatenated (multiplied)

to estimate a correct transformation from one image to the reference image. Each time two

homographies are multiplied, a small error is introduced. After a few multiplications, the

accumulated error is large enough to causemisalignment. This problem is addressed by [43, 79,

74]. The common solution is to optimize all homographies of the mosaic at once, with a prior

topology calculation step if necessary [85]. In our application, the number and arrangement of

images in the mosaic is known, therefore topology determination is not necessary. However,

a joint optimization of the geometry is still needed to achieve the best result.

Deviations from the pinhole camera model in the context of mosaic construction are dis-

cussed in [80, 75, 79]. In [80, 75], a radial distortion model is adopted to handle all residual

15

error. Shum and Szeliski [79] propose a local alignment step based on optical flow that han-

dles arbitrary camera model. However, this introduces too many degrees of freedom and the

estimation of this model is more likely to get stuck in local minima.

A similar problem to mosaicking is video stabilization. The goal there is to take an exist-

ing jittery image sequence (usually from a hand-held camera) and use it to synthesize a new

sequence without any jittering. Warping the input images to their stabilized configuration with-

out any artifacts requires a non-rigid deformation of the input. Recent methods in this area

[35, 55] have used a similar image deformationmodel as in this work, called as-rigid-as-possible

deformation. However, estimating such deformation requires precise, uniformly distributed,

correspondences between images. In our experience, the current state-of-art feature detectors

and descriptors do not produce such correspondences.

Another approach to mosaicking was recently proposed by Lin et al . [54]. There, an affine

stitching field is estimated, similar to our piecewise affine model. Instead of using point corre-

spondences directly to estimate the stitching field, which causes problems as mentioned above,

the authors formulate the problem as finding a smooth stitching field that minimizes the dif-

ference between the SIFT descriptors of the resulting (implied) correspondences. While the

stitching results are state-of-art, the flexibility of the algorithm to fit generalized motion comes

at a computational cost. AMATLAB implementation is able to stitch a pair of 500x500 images

in 8 minutes. In our domain, we are interested in stitching 6 images, each about 4008x2672 in

resolution, which is not tractable by their approach.

16

When a sequence of images is captured over time, each frame may be subject to different

lighting from the environment. As a result, compensation by auto-exposure and other image

processing control in the camera will cause variation in intensity in the captured images. This

variation will manifest itself as visible seams in the generated mosaic, which is undesirable.

A solution proposed by [47] is to estimate the camera response function and align the im-

age sequence to a common exposure. This approach, however, requires estimating epipolar

geometry and dense stereo correspondeces for every pair of images, which is not practical

in our application. In [70], the intensity of each image is adjusted using the gamma func-

tion. The parameters of the function are estimated by minimizing the intensity difference for

corresponding pixels between the image and a reference image.

Besides correcting for intensity variation, it may also be necessary to account for small

registration errors or arbitrary image differences that cause seams in the mosaic. A classic so-

lution to this problem is to blend the overlapping images. A multi-frequency blending method

popularized by [11] that does not blur high-frequency content in the image is in [12]. Blending

that minimizes inconsistency in the gradient domain was presented in [52]. While the results

appear high quality, the extra computation cost is not worth the additional improvement over

the method by Burt and Adelson [12]. Therefore, the blending method by Burt and Adelson

is adopted in our work.

17

2.2 Approach

Our goal is to generate a mosaic, which is geometrically accurate (all images in the array are

well aligned), physically realistic (equations from computer vision geometry hold), and photo-

metrically consistent (no apparent variations in intensity). Geometrical accuracy is the most

important criterion, and we address this first.

The model which registers one image onto another needs to have enough degrees of free-

dom to handle the image deformation. For a true pinhole camera, this model is a homography,

which has 8 degrees of freedom. In practice, this model does not hold and must be augmented

with additional transformations. A point p in one image is thus transformed to point p′ in

another image as:

L
(
p′
; θ
)
= H · L (p; θ) (2.1)

where H is a homography and L is the additional transformation parameterized by θ. L is

non-linear in general and can be a flow field, or a radial distortion correction (it undistorts the

image). Here we propose to define L as a piecewise affine model (PAM):

L(q) =
K∑
k=1

δ(m(q)− k)Akq (2.2)

whereK is the number of pieces,m(q) is a function that determines the corresponding piece

for point q, and Ak is an affine transformation. Each piece covers a unique region of R2. In

other words, the pieces define a tessellation of R2.

18

We have defined the tessellation to be triangular as follows. The image is first divided into

a 2N×2N grid of equal sized cells, withN ≥ 1. Each cell is then divided into 2 triangles, such

that a radial pattern is created. In other words, cells in the northwest and southeast quadrants

are divided with an up-diagonal and cells in the northeast and southwest quadrants are divided

with a down-diagonal. The goal of this construction is to facilitate the representation of radial

distortions. The tessellation is illustrated in Figure 2.2 for N = 2.

The piecewise affine model is not parameterized by affine coefficients, but by the coor-

dinates of each grid point after the deformation. This ensures that affine transformations in

neighboring triangles agree with each other on their shared border. Let Vi be the known co-

ordinates of grid point i before the deformation, and let V ′
i be the coordinates of the same

grid point after the deformation. Given the three correspondences of a triangle, Vi ↔ V ′
i ,

Vj ↔ V ′
j , Vk ↔ V ′

k , an affine transformation for that triangle is estimated by solving a small

linear system. Therefore,

θ = [V ′
1V

′
2 · · ·V ′

M] (2.3)

whereM = (2N +1)× (2N +1). For example, in Figure 2.2 there are 25 grid points, giving

50 parameters.

2.2.1 Estimating PAM

The piecewise affine model, as other parametric motion models, may be estimated using a

direct method where all pixels are used in optimization [9] or a feature-based method. An

advantage of a feature-based method is that it is usually faster than a direct method. However,

19

Figure 2.2: Tessellation of R2 with respect to an image of width w and height h.

the disadvantage is that it requires correspondences to be uniformly distributed across the

overlapping region, and the correspondences must be precise (low inlier noise) to guarantee a

high quality mosaic. On the other hand, in a direct method, no correspondences are necessary.

What is being optimized there is the intensity difference (or variance) of overlapping pixels.

The disadvantage of this method is that it uses all overlapping pixels in the optimization, which

can make the parameter estimation quite slow.

We initially experimented with a feature-based approach, but the results were not satis-

factory. After switching to a direct method, we noticed immediate improvement in mosaic

quality. Unfortunately, as expected, the computational burden was indeed a problem. In our

domain, the number of overlapping pixels in a 6-camera sensor array is over 35 million! This

number of pixels does not lend itself to real-time parameter estimation.

Baker et al . [6] made the important observation that not all pixels are necessary in this

optimization. In fact, pixels with zero, or very small gradients have no effect on convergence.

20

By removing such pixels altogether, great computational savings are made. We have used a

similar idea in our approach, but ensuring the pixels selected for optimization are uniformly

distributed across the mosaic.

The mosaicking surface is first divided into a grid of P ×P equal sized cells. We select one

pixel from each cell, provided there is at least one pixel in the cell that overlaps two or more

images. The pixel that gets selected is the one that has the highest Harris corner measure in

one of the overlapping images. In other words, we select pixel p as

p = argmax
i
det(Ci)− κ tr(Ci)

2 (2.4)

where Ci is the second-moment matrix of pixel i. By selecting pixels in this manner, we

ensure that all parts of the mosaic are aligned well and that each selected pixel makes as much

contribution to the optimization of parameters as possible.

When using a direct method, an initial solution of the parameters is required. The parame-

ters of L are initialized so that PAM is an identity map. The parameters ofH are initialized by

finding corresponding points in the images, using SIFT [57] for example, and using a robust

RANSAC estimator. When mosaicking more than two images, the homographies estimated

are homographies to the reference image. The reference image can be an arbitrary image in

the array, but to keep image deformations to a minimum, it is best to select an image in the

center. For images that do not overlap with the reference image, a homography is estimated

by concatenating appropriate neighboring homographies. The resulting homographies to the

21

reference image are then jointly optimized to minimize the distance between corresponding

points on the mosaicking surface, as expressed in this error function:

E(H1, · · · , HI) =
∑
pi,pj

||Hjpj −Hipi||
2
2 (2.5)

where I is the number of images, Hi is a homography from image i to the reference image

and pi, pj are a pair of corresponding points from images i and j.

Given this initial solution, the parameter estimation proceeds in a coarse-to-fine fashion.

Since our initial solution is often quite accurate, we build an image pyramid with only 3 levels.

At the coarsest level, we minimize the intensity variance of selected pixels over the homogra-

phy parameters. At the next two finer levels, we alternate between estimating the homography

parameters and PAM parameters. The number of times we alternate is determined dynamically

by measuring change in the parameters. When the root mean square (RMS) of the parameter

difference vector is less than 1e − 7, we determine that we have converged. Homography

parameters are optimized first, keeping the PAM parameters fixed. Then we minimize the

intensity variance over the PAM parameters, keeping the homography parameters fixed. For-

mally, we minimize the following objective:

E(H1, · · · , HI , θ) =
∑
p

1

O(p)

O(p)∑
o

(
Io
(
L−1
o

(
H−1

o p
))

− µ(p)
)2 (2.6)

where p is one of the selected pixels on the mosaicking surface, O(p) is the number of over-

lapping images at pixel p, Io(x) is the intensity of image o at location x, and µ(p) is the

22

mean intensity of the overlapping pixels. Note that taking the inverse of PAM (L−1) is more

expensive than taking the inverse of a simple homography. In practice, most of the image

deformation is handled by the homography, so that it is sufficient to use small grid sizes in

PAM (such as 2x2 or 4x4), which does not make the inverse computation a significant prob-

lem. Even with the additional cost, the model still fares better compared to a radial distortion

model, which cannot be inverted analytically. When an inverse of the radial distortion func-

tion needs to be computed, one either needs to compute a table (map) between undistorted

and distorted coordinates and interpolate, or do iterative optimization to find the coordinates.

Both choices are computationally expensive.

We minimize the objective using Levenberg-Marquardt algorithm [56]. This algorithm is

an improved variant of gradient descent, and will converge to a local minimum. Unfortunately,

this local minimum is not guaranteed to be near the global minimum, nor is it guaranteed to

be a physically possible solution (there is no such constraint on the deformation parameters).

In order to solve the first problem of not getting a global minimum, we must ensure a good

initialization. We do this by estimating the parameters hierarchically, that is, using an image

pyramid. We use 3 levels of the pyramid, but more can be used if necessary. However, the

number of overlapping pixels decreases with more levels, and care must be taken there is

enough of them to minimize the objective function.

To solve the second problem, and ensure we have a physically possible solution, we esti-

mate the parameters using multiple frames of data and constrain the homography and PAM

parameters to be fixed over time (same in every frame). Furthermore, we also assume the PAM

23

parameters are the same for each camera (θ does not vary across the camera array). This is not

necessarily the case, but it seems unlikely that each camera in the array would be manufactured

differently. Making these additional constraints decreases the number of parameters we need

to estimate and improves the likelihood of reaching a global minimum. Fixing the homogra-

phies over time ensures that we get a physically possible solution under the assumption that

the cameras do not shift or vibrate. We evaluate the validity of this assumption in our exper-

iments. The objective function does not change with the introduction of multiple frames of

data and additional contraints. The only thing we need to do is add pixels into the objective

function from multiple frames of data (multiple mosaicking surfaces). The parameters will

then be estimated such that the error is minimized across multiple frames.

2.2.2 Intensity correction

Geometrical alignment is not sufficient to produce a seamless mosaic. Notice in Figure 2.1

that there is large variation in intensity across different cameras in the sensor array. Therefore,

intensity alignment is also needed to generate a seamless mosaic. There are various approaches

to do this in the literature, such as [47]. Here we use a simple and fast approach that works

well in practice to remove gross intensity differences.

We parameterize the differences in intensity as differences in camera gain (scaling factor).

In other words, the intensity corrected image I ′ is a scaled version of the input image I :

I
′
= gI (2.7)

24

where g is an unknown gain correction factor. Therefore, we wish to estimate gain correction

factors for each camera, such that the differences in intensity in the overlapping regions are

minimized. It is easy to compute a correction factor for image A that optimally minimizes

the intensity difference from image B. However, such an estimate is likely to conflict with a

correction factor for the same image that minimizes the intensity difference from image C . It

is clear the correction factors must be estimated jointly.

The pairwise correction factors provide a useful set of constraints for joint optimization.

Consider the set of equations that must hold for optimal gain correction factors. Each pair of

overlapping images A and B generates an equation such as this

gAIA = gBIB (2.8)

gA
gB

IA = IB (2.9)

where gA and gB are unknown. For the same pair of images, we have

gABIA = IB (2.10)

where gAB is the known optimal pairwise correction factor. This implies that we have

gA − gABgB = 0 (2.11)

25

for each pair of images. Stacking these equations together creates a linear system, whose non-

trivial solution is the optimal set of gain correction factors, up to scale. We find the appropriate

scale by assuming that the average of the corrections factors should equal 1. This minimizes

the amount of intensity correction from input. It is necessary that the number of overlapping

pairs of images be at least the number of images, but this is always satisfied for sensor arrays

in our domain.

This intensity correction is performed before geometric alignment. To determine which

pixels are in the overlapping regions, we use the initial solution of mosaic geometry from

SIFT correspondences. Knowing the optimal solution is not necessary here. After geometric

alignment, the images are blended using [12] to remove any remaining seams resulting from

residual photometric differences or alignment errors.

2.2.3 Complexity

Parameters of PAM are estimated using non-linear optimization. The runtime depends on

the number of iterations, and the complexity of each iteration. In each iteration, every sample

is transformed to all the overlapping images and variance of the intensity at that location is

estimated. Therefore, the complexity of each iteration is O(SK), where S is the number of

samples andK is the number of overlapping images. Note that S ∈ O(CP 2), where C is the

number of frames used in the optimization. When using an analytical Jacobian, the number

of iterations in each round of optimization is less than 20 on average.

26

For intensity correction, we first estimate the pairwise gain correction terms and then solve

a small linear system using SVD. Estimating the pairwise gain correction terms is O(MWH)

whereM is the number of overlapping pairs of images andW,H is the width and height of

each image. In common sensor array configurations, M < 2K , where K is the number of

images. The size of the linear system isM ×K , which can be solved in O(K3) time.

We implemented the algorithm just presented in C++. Our implementation can estimate

the parameters of a mosaick of 6 WAMI images using 14 frames of data (84 total images used

in optimization) in 178 seconds for a model with N = 1 and P = 450 on an AMD FX-6300

processor. With 8 frames of data (48 total images used in optimization), the optimization time

is reduced to 48 seconds.

2.3 Results

The proposed algorithm was evaluated on the Wright-Patterson dataset [51], which was cap-

tured by an array of 6 cameras. Each of the six images is grayscale and 4872x3248 in size.

The accuracy of mosaicking was quantified using (2.6), except that all overlapping pixels were

used in the evaluation. In the following discussion and plots, this number is divided by the

number of pixels to give an average variance of intensity. No ground-truth geometry of the

camera array was supplied by the dataset. Therefore, we can only measure the accuracy indi-

rectly through (2.6). We make a reasonable assumption that the lower the objective value, the

better the accuracy.

27

We evaluated several parameters of the proposed approach. These include the sampling

grid size P (number of samples), model complexity N , the number of frames needed in the

optimization, the difference between having fixed all parameters and allowing the homography

parameters to vary, and physical plausability, as measured by stabilization accuracy.

To determine the appropriate number of samples needed to robustly estimate the mosaic,

we took an empirical approach. We measured the mosaicking accuracy with respect to the

different numbers of samples. Note that the number of samples is proportional to the sampling

grid sizeP . Usually, the number is< P 2, since many of the cells do not contain any pixels with

overlapping images. In a dataset similar to the one used for evaluation, a value of P = 100

corresponds to approximately 2762 samples per frame, P = 300 corresponds to 23568 per

frame, and P = 450 to 52316 per frame. In our evaluation, three frames were randomly

selected from the Wright-Patterson dataset, and mosaicking performance was measured there

for each value of P . For this experiment, 8 frames from the dataset were used to estimate

the parameters. These frames were uniformly distributed around the UAV's circular flight

path. The resulting plot can be seen in Figure 2.3 for when N = 1. The dotted lines in

the plot are a linear model obtained by a least squares fit to the data. We also observed a

similar behavior when N = 2, although in that case the more complex model exhibited more

variance, an indication that it is more susceptible to falling into local minima. The plot shows

that in general, more samples lead to better accuracy. From this plot, we determined that an

appropriate value of P to guarantee the best accuracy is 450. More or less samples can be

28

0

2

4

6

8

10

12

100 130 160 190 220 250 280 310 340 370 400 430

A
v
e
ra

g
e
 I
n
te

n
s
it

y
 V

a
ri

a
n
c
e

P

Frame 158 Frame 227 Frame 360

Figure 2.3: Effect of the sampling grid size P on mosaicking accuracy. In general, the
more samples are used, the better the accuracy.

selected to tradeoff accuracy and computational cost. In any case, the number of samples is a

small fraction of the total number of overlapping pixels, which is in the millions.

Similarly, to determine the appropriate model complexity (value of N) needed to robustly

estimate the mosaic, we also took an empirical approach. For the first 300 frames of the

Wright-Patterson dataset, we measured mosaicking accuracy for different values of N . The

parameters were estimated using 14 uniformly distributed frames along the flight path. This

plot can be seen in Figure 2.4. The different models produce virtually identical mosaics, with

the more complex model faring slightly worse. This is an indication that the energy function

of the more complex model is more non-linear than that of the simpler model, and there is

29

0

200

400

600

800

1000

1200

1400

1600

N=1 P=450 N=2 P=450

A
v
e
ra

g
e
 I
n
te

n
s
it

y
 V

a
ri

a
n
c
e

(s
u
m

m
e
d
 o

v
e
r

3
0
0
 f

ra
m

e
s
)

Model Complexity

Figure 2.4: Effect of PAM complexity on
mosaicking accuracy.

0

200

400

600

800

1000

1200

1400

1600

none PAM RDM

A
v
e
ra

g
e
 I
n
te

n
s
it

y
 V

a
ri

a
n
c
e

(s
u
m

m
e
d
 o

v
e
r

3
0
0
 f

ra
m

e
s
)

Deformation Model

Figure 2.5: Comparison of different defor-
mation models.

a higher chance of reaching a local minimum rather than a global minimum. Therefore we

prefer the simpler model.

To determine the number of frames needed in the optimization, we estimated the mosaic

parameters using different numbers of frames, and measured the accuracy for each. This

plot can be seen in Figure 2.6. In general, the more frames are used in the optimization, the

better the accuracy, although there is an asymptotic limit. With a small number of frames, the

optimization is more likely to reach a local minimum or "overfit" to the frame(s) in the training

set. The plot shows at least 8 frames should be used in the optimization for robustness.

We compared our approach with competing approaches [80, 75, 74] that use the radial

distortion model (RDM) for non-rigid deformations. Our implementation models 2 radial

distortion coefficients and 2 tangential distortion coefficients. In many of these approaches,

the objective function is minimized using all overlapping pixels. In the dataset we used for

30

0

500

1000

1500

2000

2500

3000

3500

4000

1 2 4 6 8 10 12 14 16 18 20 22 24 26 28

A
v
e
ra

g
e
 I
n
te

n
s
it

y
 V

a
ri

a
n
c
e

(s
u
m

m
e
d
 o

v
e
r

3
0
0
 f

ra
m

e
s
)

Training Set Size
(number of frames)

Figure 2.6: Effect of training set size on mosaicking accuracy. The larger the training set,
the better the accuracy, up to an asymptotic limit.

evaluation, there are tens of millions of such pixels, which makes using all of them intractable.

Therefore, in our implementation, we used our proposed method of carefully selecting pixels

for optimization based on spatial gradients. Similarly for the baseline comparison with no

non-rigid deformation (homography only). Quantitative comparison with the radial distortion

model as well as the baseline is illustrated in Figure 2.5. The proposed piecewise affine model

is able to achieve the best accuracy. The radial distortion model in our implementation actually

produces the worst result, which is a bit unexpected. This is either because the radial distortion

model is not the appropriate choice for this imagery, or it is just more difficult to estimate using

our direct-method. Even if the RDM produced a good result, it is very expensive to estimate,

31

because there is no analytical inverse for the radial distortion function. Therefore, it is also

unappealing from a computational cost perspective.

In our estimation of the mosaic parameters we assumed the cameras in the array do not

move over time, and solved for only one set of homographies that is applied every frame.

The validity of this assumption was evaluated in the next set of experiments. First, we used

the fixed mosaic parameters estimated using 8 images as an initial solution, and optimized

homography parameters every frame, while keeping the PAM parameters fixed. Allowing the

homography parameters to vary over time this way effectively allows camera movement. We

then compared themosaicking accuracy of the PAMmodel with fixed homography parameters

against the PAM model with varying homography parameters. This comparison can be seen

in Figure 2.7. The plot shows that the PAM model with varying homography parameters is

significantly more accurate (except for the first 13 frames, where we believe the optimization

reached a local minimum). This is not terribly surprising, since there are more degrees of

freedom. However, a model with more degrees of freedom can generate mosaics that are

not physically possible. The mosaic will look great, but the images could be warped in such

a way that no camera would have been able to generate it. Therefore, we are also interested

in verifying that the generated mosaics are physically possible and computer vision geometry

equations hold.

One way to verify physical realism of the generated mosaics is to show that they can be

accurately stabilized. WAMI imagery is captured by an aerial platform, such that the ground

plane is always visible and is the dominant feature in the image. In this case, computer vision

32

0

2

4

6

8

10

12

14

100 124 148 172 196 220 244 268 292 316 340 364 388

A
v
e
ra

g
e
 I
n
te

n
s
it

y
 V

a
ri

a
n
c
e

Frame

PAM (varying H)

PAM (fixed H)

Figure 2.7: Mosaicking accuracy with respect to fixed/varying homographies.

geometry tells us that the imagery can be stabilized by solving for homographies between the

first (reference) frame and the rest of the frames (see Chapter 3 for more details). Therefore,

if the mosaics are generated in such a way that they could have been captured by a single real

camera, the stabilization should be "perfect" and there should be no other motion in the image

except parallax and moving objects. If the generated mosaics are not physically possible, the

unrealistic deformations in the image would not follow computer vision geometry, and would

show up as extraneousmotion in the ground plane stabilized imagery. Following this approach,

we selected a point on the ground plane and on an edge in the stabilized imagery, andmeasured

its intensity over time. If this point is on the surface of a material with lambertian reflectance,

its intensity should be constant over time. If the stabilization is innacurate, and the edge

moves across this point, there will be a drastic change in intensity. Figure 2.8 shows the results

33

0

20

40

60

80

100

120

140

160

13 61 109 157 205 253 301 349 397 445 493

In
te

n
s
it

y

Frame

PAM, fixed H (μ=89.5, σ=6.1)

PAM, varying H (μ=90.5, σ=5.3)

Figure 2.8: Stabilization accuracy with respect to fixed/varying homographies as mea-
sured by the image intensity at a point on a plane (indicated by green cross above). The
intensity at the selected point should have low variance in an accurate stabilization. Mo-
saics with fixed homography parameters do not produce as accurate stabilization as mo-
saics with varying homography parameters.

of this experiment for mosaics with fixed and varying homographies. Mosaics with varying

homography parameters do indeed have more uniform intensity over time at the selected point

than mosaics with fixed homographies. This is an indication that there is indeed some camera

movement in the sensor array, though it appears to be slight.

Qualitative results of the piecewise affine model are illustrated in Figure 2.10. The piece-

wise affine model has practically perfect registration. We also evaluated the proposed intensity

correction algorithm qualitatively. As Figure 2.9 shows, our approach removes most of the

intensity differences between the different cameras. Any remaining differences will disappear

after blending the images [12].

34

(a) Initialization (b) After correction

Figure 2.9: Results of intensity correction on frame 283 of the Wright-Patterson dataset.
Variations in intensity disappear when the proposed approach is applied.

Figure 2.10: Detailed results of an estimated mosaic on frames 199 and 289. The arrows
indicate the endpoints of the seam. The alignment is perfect.

35

2.4 Conclusions

Mosaicking a sensor array from WAMI is the first step in the semantics extraction process.

This step is critical, because all the following vision tasks depend on it being reliable. We have

proposed an approach that generates high-quality mosaics in an efficient manner, suitable for

such tasks. A comparison with the standard radial distortion model used in previous work

reveals that the proposed model is superior.

36

C H A P T E R 3
Video Stabilization

By performing mosaicking as described in the last chapter, we now have a single video stream

to analyze and infer useful information from. As mentioned earlier, this video stream covers

a large geographic area on the order of a few square kilometers, yet it has high enough res-

olution that vehicles (and people for future sensors) are visible. People's daily activities and

movements contain a lot of useful information, and understanding them is critical to support

the applications outlined earlier.

Detecting motion in the video stream is a necessary first step in achieving this understand-

ing. Motion in a video manifests itself as changes in image intensity. Therefore, a simple way

to detect motion is to subtract two images, and look for areas in the resulting image where

there is a difference. This works (ignoring lighting changes in the scene and CMOS sensor

noise), but it does not distinguish between motion caused by objects in the scene and camera

motion. In our case, the camera is mounted on an airplane, so camera motion is significant

37

and can not be ignored. Since we are only interested in the motion of objects, this motion

must be removed. Removing (or constraining) the motion of a camera in a video is called

video stabilization.

3.1 Related Work

The ideal way to do video stabilization is to recover the 3D scene structure and camera pose

(rotation, translation) in every frame, and reproject the video into a static camera pose (or

a sequence of synthetic camera poses in some applications). When the (static) 3D world is

represented as a point cloud {Xi|i = 1 · · ·N}, in the coordinate system of camera c as

{Xc
i |i = 1 · · ·N}, its projection in view c as {xc

i |i = 1 · · ·N}, camera poses as {(Rt, Tt)|t =

1 · · ·T}, and images as {It|t = 1 · · ·T}, a stabilized image sequence {Ist |t = 1 · · ·T} can

be generated using

Ist (x
s
i) = It(x

t
i) (3.1)

Ist (K(Xs
i)) = It(K(X t

i)) (3.2)

Ist (K(RsXi + Ts)) = It(K(RtXi + Tt)) (3.3)

Ist (K(Xs
i)) = It(K(RtsX

t
i + Tts)) (3.4)

Ist (x
s
i) = It(K(RtsX

t
i + Tts)) (3.5)

38

where K is the camera intrinsics matrix [32], and (Rts, Tts) is the rigid transformation from

camera t to camera s, which is easily computed from (Rt, Tt) and (Rs, Ts). Even though con-

ceptually straightforward, this approach is rare to find in practice, because 3D reconstruction

(obtaining {Xi}) and camera pose estimation (obtaining (Rt, Tt)) remain challenging prob-

lems in computer vision. Nevertheless, there have been attempts to do this [55] with good

results.

The only way to avoid full 3D geometry inference is to make assumptions about the 3D

world or camera motion. In wide area motion imagery, the common approach is to assume

the 3D structure can be well approximated by a plane. In this case,

NTXi = d (3.6)

NTXi

d
= 1 (3.7)

39

whereN and d are the plane parameters (in world coordinate system). Representing the plane

parameters in view c as (N c, dc), reprojection is then

Ist (x
s
i) = It(K(RtsX

t
i + Tts)) (3.8)

Ist (x
s
i) = It(K(RtsX

t
i + Tts((N

tTX t
i)/d

t))) (3.9)

Ist (x
s
i) = It(K(RtsX

t
i + ((TtsN

tT)/dt)X t
i)) (3.10)

Ist (x
s
i) = It(K(Rts + ((TtsN

tT)/dt))X t
i)) (3.11)

Ist (x
s
i) = It(KHX t

i) (3.12)

Ist (x
s
i) = It(KHK−1xt

i) (3.13)

Ist (x
s
i) = It(Ĥxt

i) . (3.14)

This shows that by making the assumption that the world is planar, we can perform the repro-

jection by simply estimating a 2D projective transformation Ĥ from view t to view s. The 2D

transformation H is called a homography and contains the motion of the camera. This is the

same homography as in the previous chapter, although there the plane is at infinity (d = ∞).

The estimation of Ĥ is much easier than estimating the 3D world and camera poses, because

it has only 8 degrees of freedom. This is in contrast to 3N + 6 degrees of freedom for the

general case.

As we briefly discussed in section 2.2.1, there are two general classes of methods for the

estimation of parametric motion models, such as a homography: feature-based and direct. In

a direct method, given an initial estimate of the motion, the parameters are adjusted such that

40

the intensity difference at overlapping pixels between the images is minimized [9]. In a feature-

based method, image features such as Harris corners [31] or local extrema in a Laplacian image

pyramid are first extracted in both images, then represented with an invariant descriptor such

as SIFT [57], and matched by minimizing a descriptor difference. The resulting point corre-

spondences are then used in a robust estimator (tolerant to some wrong correspondences),

such as RANSAC [24].

The advantage of a direct method is that it usually produces more accurate parameter

estimates than a feature-based method, because it uses the entire image in the minimization of

the energy function, and does not require the estimation of features and their correspondences,

which may be difficult to find and match. The disadvantages of a direct method are that it

requires a good initial estimate of the parameters, is usually slower than a feature-basedmethod,

and it assumes there is no other motion besides themotion of the camera (all overlapping pixels

are considered for optimization). The first problem can be overcome relatively easily, and we

could deal with the second problem as in the previous chapter, by carefully selecting a small

number of pixels to be used in the optimization. However, the third problem is more difficult

to handle. In our imagery, there are hundreds, if not thousands, of moving targets, and their

motion would cause problems in the optimization and prevent us from obtaining the correct

homography estimate. A feature-based method paired with a robust estimator does not have

this problem, because correspondences that do not agree with the homography model are

automatically removed from consideration. Therefore, we will use a feature-based method in

our approach.

41

3.2 Approach

We need to estimate homographies from each frame of the video to a reference frame, usually

the first frame of the sequence. We can estimate these directly, by finding correspondences

between each frame and the first, or indirectly, by finding correspondences between adjacent

frames and composing (multiplying) the resulting transforms to compute the desired homog-

raphy from each frame to the first. Each of these strategies has some advantages and dis-

advantages. The first strategy is generally more accurate than the first, but because we are

estimating each homography independently, a sequence of such homography estimates is not

guaranteed to be consistent (the estimate of the plane parameters may slightly vary from frame

to frame). This inconsistency manifests itself as jitter in the stabilized sequence, especially for

frames that have been taken from different viewpoints than the first, and the number of cor-

respondences is small. The second strategy does not have a problem with jitter, because the

homography estimates there are not independent. However, it is generally less accurate due to

the accumulation of small errors in parameter estimates over time (drift). Drift and jitter are

both undesirable.

We propose an approach that takes both sets of homography estimates, and produces a

new set minimizing both drift and jitter. Let the set of homographies estimated directly be

HF = {Ht,1|t = 2 · · ·T} (from frame t to 1) and the set of pairwise homographies be

42

HP = {Ht,t−1|t = 2 · · ·T} (from frame t to t − 1). If the homographies are correct, they

need to satisfy the following set of constraints:

Ht+1,1 = Ht,1Ht+1,t (3.15)

Ht+1,t = H−1
t,1 Ht+1,1 (3.16)

Ht,1 = Ht+1,1H
−1
t+1,t . (3.17)

Because HF and HP were estimated independently, these constraints will not be satisfied in

general. Therefore, we devised an iterative optimization procedure to adjustHF andHP until

they agree. In doing so, we minimize jitter error present inHF and drift error present in HP .

In each time step t > 2, we repeatedly do the following:

H ′
t+1,1 = Ht,1Ht+1,t (3.18)

Ht+1,1 = 0.5×Ht+1,1 + 0.5×H ′
t+1,1 (3.19)

H ′
t+1,t = H−1

t,1 Ht+1,1 (3.20)

Ht+1,t = 0.5×Ht+1,t + 0.5×H ′
t+1,t (3.21)

H ′
t,1 = Ht+1,1H

−1
t+1,t (3.22)

Ht,1 = 0.5×Ht,1 + 0.5×H ′
t,1 . (3.23)

43

The difference between H ′
t+1,1 and Ht+1,1, H ′

t+1,t and Ht+1,t, H ′
t,1 and Ht,1 does not go to

0 immediately, but it decreases with every update. Therefore, we repeat the above sequence

within each time step as many times as necessary until the differences are negligible.

The order in which the homographies are updated matters and is carefully designed. We

first modifyHt+1,1 in which we have the least confidence, sinceHt,1 was optimized in the last

time step and Ht+1,t is a homography for adjacent frames, which has small error. We then

updateHt+1,t, which is now the remaining unoptimized homography. Finally,Ht,1 is updated

using the new values of Ht+1,1 and Ht+1,t.

3.3 Results

The proposed stabilization method was evaluated on a sequence from the Wright-Patterson

dataset [51], which is a real WAMI dataset captured by the Air Force Research Lab. The dataset

was mosaicked using the method proposed in the last chapter before performing stabilization.

Ground truth stabilization was not available, as this would require manually estimating corre-

spondences for every frame in the dataset. Therefore, we devised an alternative approach for

quantitative evaluation.

If the dataset is correctly stabilized, the image intensity for locations on the ground plane

and never occluded by nearby trees or structures should be (nearly) constant. This assumes the

material on the ground has Lambertian reflectance. There may be small variation in intensity

due to the changing relative position of the sun (light source) with respect to the camera,

because the captured image is brighter when the sun points into the camera. An additional

44

source of intensity variation may be the automatic gain and exposure control in the sensor,

but most of this variation is removed using the method in section 2.2.2 adapted to a sequence

of images (rather than an array), which we apply before evaluation.

Therefore, we selected a random image coordinate with the above property and measured

its image intensity in every frame of the stabilized sequence for the different stabilization

methods. We chose a point with a high image intensity gradient (edge), so that small errors

in stabilization would be immediately apparent. The local image region around this point is

shown in Figure 3.1. We also show the same region in the last frame of the stabilized sequence

for different stabilization methods.

The results are shown in Figure 3.2. When pairwise homographies are used for stabi-

lization, drift in parameter estimates is clearly evident. The image intensity varies significantly,

indicating image motion. When direct homographies are estimated, image intensity varies little

in general, which is already an improvement, but the stabilization is not "smooth." There are

many frames where the image moves back and forth (sharp changes in intensity from frame to

frame). This is evidence of the jitter phenomenon. Finally, when homographies are optimized

using the proposed approach, we see that both the image intensity varies very little and the

amount of jitter is significantly reduced.

3.4 Conclusions

Accurate image stabilization is important for the detection of motion, enabling tracking of

targets of interest. The ideal way to stabilize the video is to perform full 3D geometry inference,

45

(a) (b) (c) (d)

Figure 3.1: Evaluating stabilization accuracy. (a) The image region in the first frame of
the sequence, with the evaluation coordinate marked. The image region in the last frame
of the sequence when stabilized with (b) pairwise homographies, (c) direct homographies,
and (d) optimal (proposed) homographies.

60

80

100

120

140

160

180

200

220

240

0 500 1000 1500

In
te
n
s
it
y

Frame

(a) Using pairwise homographies

60

80

100

120

140

160

180

200

220

240

0 500 1000 1500

In
te
n
s
it
y

Frame

(b) Using direct homography estimates

60

80

100

120

140

160

180

200

220

240

0 500 1000 1500

In
te
n
s
it
y

Frame

(c) Using optimally estimated homographies

Figure 3.2: Stabilization accuracy for different estimation methods as measured by the
intensity at a fixed image coordinate over time.

46

but this remains an impractical approach. Instead, we stabilize the video by assuming the world

is planar and estimating homographies, a common technique for aerial videos. Our proposed

homography estimation algorithm has very little drift and jitter, in contrast to widely used

existing techniques.

47

C H A P T E R 4
Tracking

The problem of tracking multiple targets in a video sequence has appeared in a wide variety of

contexts, including radar tracking in the early days, pedestrian tracking, cell and ant tracking in

biology, and vehicle tracking. In all cases, the goal is to determine a spatio-temporal description

of the moving objects in the sequence. As is often the case in computer vision, each of these

contexts presents a different set of challenges and corresponding solutions. In this chapter,

we revisit the multiple target tracking problem in the context of wide area motion imagery

(WAMI) imagery.

As in other types of imagery, one needs to handle occlusions, and changes in illumination

and appearance. Unlike other imagery, the large, unknown, and varying number of targets

along with a large number of false detections makes this a particularly difficult data association

problem. Furthermore, the mapping between detections and targets is many-many in every

48

frame in general, which increases the complexity of the computation. A correct data associa-

tion requires looking ahead in time, but this in turn causes an exponential growth of the search

space.

A classical formulation of the multiple target tracking problem over N > 1 frames is a

multidimensional assignment problem [66]. Here, the objective is to partition all the detec-

tions into tracks and false alarms, such that each detection is assigned to at most one track,

and the posterior probability of each track is maximized. This problem is NP-hard, and is usu-

ally approximately solved using Multiple Hypothesis Tracking (MHT) [69, 17]. This method

operates on only a subset of data association hypotheses, but the subset is chosen and main-

tained optimally. Nevertheless, in our domain of WAMI imagery, this becomes costly even

for small N , because the number of targets and potential interactions between them is large.

A large number of targets increases the size of the linear assignment problems to be solved,

and a large number of potential interactions increases the number of candidate hypotheses to

be maintained and generated.

Even when N = 2, and the multidimensional assignment problem is reduced to a linear

(1D) assignment problem, the computation is still intractable. This was observed by Reilly et

al [70], where they proposed to divide the image into cells and solve the association problem

independently within each cell. Unfortunately, with no frames to look ahead, the ambiguity in

association is large, and local scene constraints need to be imposed to get correct association.

Dividing the image into tiles was also proposed in [45] where an MHT tracker with N = 3

was used.

49

In our work, we argue that using a large sliding window (value ofN) is essential in minimiz-

ing false alarms and achieving high tracking accuracy in WAMI imagery. However, in order to

resolve the huge number of possible associations at such scale, it is not possible to use existing

approaches and a new way of looking at the problem is needed. We propose a new approach

which, with a few relaxing assumptions, is able to significantly reduce the search space of pos-

sible associations, and can solve the association problem very efficiently. It does so purely by

maximizing motion smoothness and appearance consistency. No additional scene constraints

are needed.

4.1 Related Work

Another class of methods that solves the multiple target tracking problem over multiple frames

is based on min-cost flow/Linear Programming [41, 93, 3, 64, 8]. The advantage here is that a

globally optimal solution can be obtained, sometimes very efficiently [64, 8]. However, these

methods have a few inherent assumptions unsuitable in our domain. First of all, they can

only express "static" association costs. They make it difficult to model long-range, dynamic,

motion and dependencies. What we mean by this is that the association cost for a pair of

detections in these formulations is independent of all other associations that happened earlier

in a track. For example, if at time t a target is traveling at a speed s units/frame (which we

have determined with associations up to time t), we would like to express that at time t+1, the

association with a detection s units away is more likely than with a detection s−∆s or s+∆s

units away. This "constant velocity" motion model cannot be expressed with variables over

50

pairs of detections. This can be alleviated by introducing more variables (e.g. over triplets),

but this comes at a high cost. Workarounds have been proposed [3], but in general, these

methods have weak motion models and often require a prior specification of locations where

objects enter the scene and exit. In our domain appearance modeling is limited, and motion

modeling is important. Furthermore, as a practical matter, the association cost in existing

implementations is usually expressed in terms of the overlap of two detections, which will not

work in our domain where the frame rate is low (there is no overlap).

Due to these characteristics, these methods are less tolerant to false detections, may create

many short tracks and require pre or post-processing [39]. Hierarchical and tracklet-based

methods present another alternative that has become popular [63, 2, 34, 40]. They first deter-

mine short tracks, or tracklets, and then link these tracklets into longer tracks in one or more

steps. Tracklets are usually determined by using a nearest neighbor association [63], some

affinity measure [34], or particle filtering [40]. They are then combined by solving the linear

assignment problem or using min-cost flow [73, 13]. In most, if not all cases, these tracklets

are initially very short, covering as few as 3 frames. This puts more pressure on the linking

step to correctly combine the tracklets. In contrast, we argue in our work that it is useful to

solve for longer tracklets covering many frames, and then use a simpler linking step. This

approach was avoided in the past, because it was thought to be cost prohibitive. We show that

it is possible to resolve the great number of association hypotheses at long time scales and

efficiently generate long tracklets.

51

Particle filtering has usually been a classic solution for single-target tracking, but there have

been several attempts to use it for multiple target tracking as well [46, 62]. The difficulty there

is to keep the number of (joint) state hypotheses low, while making sure the correct state is

not missed. In [46], a more efficient solution is obtained by assuming Gaussian motion, and

computing the target state analytically for each sampled data association. Another sampling

algorithm, using data-driven MCMC, was introduced in [92]. Spatio-temporal smoothness in

motion and appearance was key to recovering the tracks of an unknown number of targets.

This approach, however, requires a good initialization for quick convergence.

4.2 Approach

The goal of our algorithm is to infer tracklets, each representing one object, over a (sliding)

window of frames. This window is usually 4-8 seconds in length. The input to our algo-

rithm is a set of object detections (blobs) in each frame. These can be as simple as connected

components taken directly from background subtraction, or they can be the output of a more

complex object detector. Each object detection also has an associated appearance represen-

tation, such as the raw image patch, or a histogram. These tracklets are then aggregated into

tracks by continuously performing track linking. Since the tracklets we determine are long,

there is little ambiguity in track linking, and this step is relatively simple. The key is how to

efficiently determine the tracklets over a long temporal window. A flow-chart that illustrates

multi-object tracking using tracklets is in Figure 4.1.

52

Find tracklets beginning this frame

Associate tracklets with existing tracks

Create new tracks from remaining tracklets

Shift tracklet inference window

Figure 4.1: The role of tracklets in multi-object tracking. The first step is the focus of this
chapter.

4.2.1 Detection

Since the resolution of targets in our imagery is limited, we rely on background subtraction

for the detection of moving targets. Naturally, not all detections from background subtraction

correspond to targets of interest. To minimize the number of detections we need to consider

without attempting to model the target appearance, which is difficult given the limited resolu-

tion, we train a binary decision tree on object area and aspect ratio features.

Given a few frames from a training sequence with all target objects marked with a bounding

box, and a structure of the decision tree, we need to learn the thresholds at each level. There

are 3 levels in our decision tree. We first check the aspect ratio is less than some threshold,

then the object area greater than some threshold, and finally the object area less than some

53

threshold. At each level, the threshold is determined by maximizing a weighted F-score, which

allows us to put more emphasis either on precision or recall.

4.2.2 Tracking

We do not assume an a priori number of targets in the scene, and the number can vary over

time. Requiring that each detection be used at most once in a track, and running MHT over

an 8 second (16 frame) window would be cost prohibitive. However, we believe that tracklets

determined over such long time scales are useful. Therefore, instead of reducing the size of

the temporal window, as has been done by others, we instead relax the assumption that each

detection be used at most once. This allows us to determine tracklets independently, which

simplifies the computation and allows for parallelism.

Since we do not know the number of targets ahead of time and we would like to avoid

computations jointly involving all targets and detections, we assume that each detection in the

first frame of the window is a potential object. Therefore, we find an optimal tracklet, or a set

of tracklets, starting at each detection in the first window frame. This is not a problem, because

for detections that are false alarms, the model of a valid tracklet (consistency of motion and

appearance) is not satisfied, and the tracklet is discarded. Tracklets that start in the second or

later frame of the window are found when the sliding window shifts to that frame.

54

4.2.3 Problem formulation

If the initial detection of an object is given to us, we know there must be another detected

instance of that object located "nearby" in subsequent frames. We are assuming there are no

missed detections (due to occlusion or else) for now. Therefore, the optimal tracklet, or a set

of tracklets, that we want to find must be composed of a series of "nearby" detections. This

can be expressed in a directed acyclic graph, which we call a detection tree, or an association

tree. For a window size of T frames, this tree would have T levels. A node in level t has links

to those nodes in level t + 1, which are "nearby." The root of the tree, t = 0, represents the

initial detection. The definition of nearby for the first level is set according to the maximum

expected velocity of the target, but for the following levels, it is determined dynamically by

maximum possible acceleration from the target's current velocity. The velocity estimate is

maintained using a Kalman filter for each sequence of detections (each leaf in the tree). This

graph construction is actually an important point. As mentioned above, min-cost flow/Linear

Programming methods have no notion of a "track" during graph construction and create more

edges than necessary and set the costs on those edges to reflect only a weak motion model.

The number of possible tracklets arising from this detection tree is huge (greater than or

equal to the number of paths), and we certainly do not want to evaluate every hypothesis.

Instead, we realize that every such hypothesis is making a decision about including or not in-

cluding each detection. In other words, this is just a binary labeling, or segmentation problem.

The valid detections need to be separated from the invalid detections. The valid detections

are those that have similar appearance to the initial detection and have smooth motion. The

55

invalid detections are detections due to noise, or due to targets other than the one that gen-

erated the initial detection. One consequence of this view is that given the valid detections, it

is not always known which targets generated them. It could be that a single target generated

them (with possibly multiple detections in one frame due to the noisy nature of background

subtraction), or it could be two (or several) similar looking targets very close to each other. It

may seem that nothing was gained by the segmentation, but actually solving this problem is

easier than before, because the search space is significantly reduced.

There are several ways to solve the segmentation problem. One way is to use a min-

cut formulation similar to [29]. This, however, produces a "hard" segmentation without a

confidence estimate, and restricts the form of the interaction between different detections.

An alternative way that we pursue here is to determine the labeling in a generic probabilistic

framework.

4.2.4 Segmenting Detections

Let the label of each detection i at frame t be a binary random variable yti , and let y denote

all labels in the window. Let the observed properties of each detection (location, appearance,

etc.) be denoted as oti, and let o denote all observations Then, the segmentation problem is

argmax
y

p(y|o) . (4.1)

56

Figure 4.2: Example of the structure of the graphical model. Each yti is a binary vari-
able that represents a detection label. The shaded nodes represent the measurements
associated with each detection (location, appearance, etc.).

Solving this problem depends on how the joint distribution is formalized, allowing a great deal

of flexibility. Here we factorize the joint distribution into a product of prior and conditional

probabilities,

p(y, o) = p(y0)
∏

i,j,t>0

ytinear yt−1
j

p(yti |yt−1
j)

∏
i,t>0

p(oti|yti) . (4.2)

We let y0 = 1 to denote the assumption that each detection in the first frame is valid. oti de-

notes the observed properties of each detection (location, appearance, etc.). This factorization

corresponds directly to the detection tree discussed earlier, and is illustrated in Figure 4.2.

One assumption that we are making here that may not be immediately apparent is that

when a detection has multiple parent detections, independence of the parents is assumed.

As a result, the conditional distribution conditioned on multiple parents is factorized into a

product of simple conditional distributions, each conditioned on only one parent:

p(yti |yt−1
1 , yt−1

2 , · · · , yt−1
K) ∝

K∏
k=1

p(yti |yt−1
k) . (4.3)

57

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0 48 96 144 192 240 288 336 384 432 480 528 576 624

p

Detection Tree Size

Before Inference

After Inference

Figure 4.3: The effect of performing a detection segmentation step. The size of the
detection tree, and thus the hypothesis space, is significantly reduced.

This assumption is not correct when the parent detections come from one object (i.e. split

detections caused by noisy background subtraction), but it significantly simplifies the computa-

tion, and is not a big problem in practice. Without this assumption, the conditional probability

table for a distribution conditioned onK parents would be 2 by 2K .

Once the prior and conditional probabilities are specified, the optimal solution to the seg-

mentation problem is given byMAP inference. In addition, the max-marginals provide us with

a confidence estimate of each detection. MAP inference is a well-studied problem, and can be

solved using the max-product algorithm [49] as done here, or LP relaxation algorithms, such

as [81]. The effect of this segmentation step can be seen in Figure 4.3, where we show how

the search space is reduced after invalid detections are removed from the graph.

58

yti = 0 yti = 1
p(oti|yti) 1− a(oti, o0) a(oti, o0)

Table 4.1: Form of the conditional probability distribution p(oti|yti) used in the graphical
model.

yti = 0 yti = 1
yt−1
j = 0 0.5 0.5
yt−1
j = 1 1− a(oti, o

t−1
j)m(oti) a(oti, o

t−1
j)m(oti)

Table 4.2: Form of the conditional probability distribution p(yti |y
t−1
j) used in the graphical

model.

4.2.5 Probability Distributions

The conditional probability p(oti|yti) reflects the appearance similarity between the corre-

sponding detection yti and the initial detection y0. Any appearance similarity measure can

be used. It can be as simple as a sum of squared differences, or as complex as output of a clas-

sifier. For appearance similarity a that ranges in [0, 1], the distribution is shown in Table 4.1.

The conditional probability p(yti |yt−1
j) is based on both the appearance similarity between

the corresponding detections, as well as the motion likelihood of this detection given the pre-

ceding detections. The preceding detections are those which are on the path up to the root

in the detection tree. There is a problem with this definition when a particular detection has

multiple parents, because the motion model, which is described below, assumes only one ob-

servation at each timestep. To solve this problem we take the parent detection which gives

the maximum motion likelihood, and call it the "motion parent." The effect of this is not to

unfairly penalize valid detections that follow this ambiguity. For a motion likelihood m that

ranges in [0, 1], the conditional probability table is shown in Table 4.2.

59

This conditional distribution is a little bit complicated due to the asymmetry. The asym-

metry is necessary, because we need a different behavior when the parent label is 0 (invalid

detection) and when it is 1 (valid detection). When the parent detection is valid (bottom row),

the distribution expresses that the probability is high when the detection label appears similar

to the parent, and the motion likelihood after observing this detection is high (the motion is

smooth). When the parent detection is invalid, however, we can not say anything about the

appearance similarity. This is because a parent detection that is a false alarm (noise) may still

have a similar appearance and motion. Therefore, in this case the distribution does not give a

"hint" about the label of the detection.

Any motion model can be used to determine the motion likelihood. Here we use a simple

linear-Gaussian model:

zt+1 = Azt + w (4.4)

xt+1 = Hzt+1 + v (4.5)

where zt+1 is the state vector, which includes the object position and velocity, xt+1 is the

measurement vector of the object position, w ∼ N (0,Q) is the process noise, and v ∼

N (0,R) is the measurement noise. The motion likelihoodm is then

m(yti) = exp
(
−1

2
eTi P

−1
i ei

)
(4.6)

60

where ei = zit −�zit and Pi = A�PiAT . �zit is the posterior state estimate, Pi is the prior state

covariance, and �Pi is the posterior state covariance in the previous time step. The model is

initialized using the first two detections in the sequence.

Having specified the joint distribution, the MAP labeling is given by MAP inference. As

indicated earlier, the valid detections in this labeling do not always define one tracklet. There

may be extra detections due to noise, or due to the limitations of our model (a simplified

factorization of the joint). We describe how to handle this problem next.

4.2.6 Tracklets from detections

Since we made the assumption that the first detection in our graph comes from a potential

target, we continue this assumption, and look for a sequence of detections from the root that

are labeled as "valid." There may be more than one sequence, but we choose the one(s) that

has the maximum length. We find this sequence by performing Breadth-First-Search (BFS).

An alternative way to generate possible tracklets is to follow the motion parent pointers up

to the root of the tree from each valid detection, and removing any tracklet that is a prefix of

another. We have considered this approach, but performing BFS is much faster, and this is

our method of choice.

At this point we have a set of tracklets, but not all of them have been generated by real

targets. Some of them are due to parallax, reflections, or other noise. To remove false tracklets,

we analyze tracklets' features, and remove those tracklets that fail to pass our decision criteria.

61

Currently we are using a very simple, rule-based, classifier, and it works well, but a more

powerful, or application-specific, statistical approach would work just as well.

Our criteria for a valid tracklet are:

• Minimum Length: The number of detections in the temporal window must be at least

75% of the window size.

• Acceleration: The average acceleration of the object must be less than a threshold (≈ 6

m/s2). The average acceleration is estimated from the position of the detections, which

are at least half a second apart. The elapsed time requirement is necessary to avoid bad

estimates due to discretization noise.

• Smooth Motion: To determine motion smoothness, we compute the dot product of

successive motion directions (at least half a second apart), transform it to [0, 1] range,

and compute the average. This average must be greater than a threshold (≈ 0.80) for

the criterion to be satisfied. Note that this does not rule out tracklets that are making a

turn, since the large change in direction will be filtered out by the average.

• Minimum Speed: The target moves with minimum speed. The effect of this is to fil-

ter out motion due to parallax. This only applies when detections are obtained from

background subtraction.

The importance of each criterion is illustrated in Figure 4.4. The minimum length criterion is

responsible for removing most of the tracklets.

62

Minimum Length

Large Acceleration

Motion Smoothness

Duplicate

Stationary

Figure 4.4: Criteria for validating found tracklets. The most important criterion for track
validation, as measured by the fraction of tracklets removed by it, is the tracklet length.

Background subtraction may generate multiple detections for one target. This would mean

the generation of two or more tracklets that are virtually identical (differing in only 1 or 2

frames). To handle this case, we also incorporate a duplicate detector, which detects and

removes duplicate tracklets. It computes the similarity of all pairs of tracks τ1 and τ2 using

sim(τ1, τ2) =
1

T

T∑
1

a(τ t1, τ
t
2) ∗ s(bt1, bt2) (4.7)

s(b1, b2) = exp(−∥b1 − b2∥/c) , (4.8)

where a(·) is the appearance similarity measure as before, b is the bounding box of the detec-

tion (x, y, w, h), and c is a constant to increase the dynamic range (c ≈ 40). When sim(τ1, τ2)

exceeds a threshold (≈ 0.55), the track with the lower motion smoothness is removed.

63

4.2.7 Occlusion handling

So far in the discussion we have assumed there is no occlusion or missing data. It turns out

that when an object is occluded but the occluder is detected, the algorithm as presented still

works. This is because the detection tree does not really change, except that no detections in

the frame where the object is occluded will be valid. A tracklet is still found, provided that the

object is not occluded for most of the window. In that case, the tracklet would fail the first

criterion above.

The real problem that needs to be handled is missing detections. When there is a missed

detection, the detection tree will be shorter thanT . If it is too short, any tracklets that are found

will not have enough detections and fail the first criterion above. This problem is solved by

adding "virtual detections" to the detection tree. These are added whenever a detection in

frame t has no nearby detections in frame t + 1. The position of this virtual detection is

estimated using the motion model, and the appearance is copied from the (detected) parent.

This procedure is recursive, so that when a newly added virtual detection does not have nearby

detections in the next frame, the process is repeated.

4.2.8 Track Linking

A multi-target tracker based on tracklets found by the presented algorithm works as shown

in Figure 4.1. The step that we now address is the second one -- associating tracklets with

existing tracks. The task of this step is to form long tracks from tracklets found in the sliding

window. Many strategies can be used here (e.g. Hungarian algorithm), but since the tracklets

64

we find are relatively long, the ambiguity in matching them to tracks is reduced. Therefore, we

can use a much simpler strategy, that also allows us to accomodate the many-many mapping

property.

We associate each tracklet with an existing track as long as (4.7) is above a threshold. If

we are only interested in matching each tracklet to one existing track, then we associate with a

track having the maximum similarity, provided the similarity is above a threshold. A reasonable

threshold is again ≈ 0.55.

4.3 Results

We have evaluated the multi-target tracker on a publicly available dataset from Air Force Re-

search Laboratory [51]. This dataset was captured by an array of six cameras at roughly 1 Hz,

and it is in grayscale. We mosaicked the dataset using [68], stabilized it, and georeferenced it

prior to tracking. A reference with a resolution of 0.30 meters (1 foot) per pixel was used,

making vehicles, our targets of interest, about 20x10 pixels in size. A 1024-frame sequence of

a 1408x1408 region was selected for evaluation. One frame from this sequence is shown in

Figure 4.5.

The only moving objects in the video are vehicles, but they are in very low resolution. The

small vehicle size makes detection and tracking quite challenging. Since this low resolution

gives very limited appearance information, we use a relatively simple approach for measuring

65

Figure 4.5: One frame of the sequence used in the evaluation. Vehicles, our targets of
interest, are quite small.

appearance similarity. We build an intensity histogram for each patch and use the exponen-

tiated negative KL-divergence between the histograms as a similarity measure. This basically

allows us to distinguish light-colored vehicles from dark-colored vehicles.

Moving object detection was done using background subtraction. The background is mod-

eled as the mode of a sliding window of 11 frames. A window size of 8 frames, corresponding

to about 8 seconds of video was used.

The dataset includes ground truth, which was manually generated, although we made one

change to it. In each track, we removed ground truth detections which occured before the

vehicle first moved. This means that tracks with vehicles that never move in the ground truth

are removed, and other tracks are truncated in the beginning, if needed. We rely on back-

ground subtraction for detection, so these detections would never be found and tracked by

our algorithm. Furthermore, until a vehicle moves, it is not of interest. We did not remove

detections that occurred after a moving vehicle stopped. These would also be missed by our

66

detection algorithm, but a stopping vehicle case is of interest and we believe that such case

should be handled in the future. The edited ground truth contains 403 tracks.

Several metrics were used to measure performance: object detection rate (ODR), false

alarm rate (FAR), mean cumulative swaps of tracks (SWPS), and mean cumulative broken

tracks (BRKS). Object detection rate is defined as the fraction of detections in the ground

truth found in the estimated tracks. False alarm rate is defined as the average number of false

detections in estimated tracks in every frame. Mean cumulative swaps of tracks is defined as the

average number of swaps (ID switches) in every ground truth track (over its lifetime). Mean

cumulative broken tracks is defined as the average number of breaks in every ground truth

track (over its lifetime). A break happens when a ground truth track is not matched to any ID

in the next frame. These last two definitions are based on [71]. Computational efficiency was

measured by the average number of frames processed per second (FPS). We ran the tracker

3 times on an AMD FX-6300 CPU, with "warm" cache (minimizing I/O time), and averaged

the runtimes.

We compared our approach with [70]. Our implementation of [70] was configured to use

one grid cell and to not perform gradient suppression in order to have the tracker operate on

the same set of detections as our proposed algorithm. However, the increase in the number of

false detections was compensated by removing tracks shorter than 3 frames. We believe this

configuration is the most suitable one for comparison. We ran the implementation without

allowing any occlusion (p = 0) as well as with allowing 1 occluded frame (p = 1). The

comparison is shown in Table 4.3.

67

Proposed [70] (p = 0) [70] (p = 1)
Object Detection Rate 0.36 0.36 0.39
False Alarm Rate 1.03 53.0 81.5
Track Swaps 0.48 1.33 0.96
Track Breaks 0.64 1.22 0.93
Frames Per Second 42.0 8.73 6.78

Table 4.3: Comparison of the proposed approach with competing methods on real data.

Proposed [70] (p = 0)
Object Detection Rate 0.91 0.90
Track Swaps 1.22 3.34
Track Breaks 0.44 0.34

Table 4.4: Comparison of the proposed approach with competing methods on ground
truth detections.

We also evaluated the data association performance of the proposed algorithm by running

it on the set of ground truth detections. In other words, instead of using detections from

background subtraction, we generated detections from the ground truth. However, since the

ground truth only contains the center of each target, even the little appearance information

we were able to take advantage of is now significantly limited. In this experiment, we are

effectively tasked with estimating tracks from moving dots. The minimum speed filter and

smooth motion filter from section 4.2.6 were disabled for this experiment, but otherwise the

algorithm was unchanged. The results of this evaluation are shown in Table 4.4.

The primary parameter of the proposed approach is the size of the sliding window, N .

To understand the algorithm's performance with respect to this parameter, we have run the

tracker with different values of N on the same evaluation sequence. These results are shown

in Table 4.5.

68

N ODR FAR SWPS BRKS FPS
4 0.40 8.17 0.66 0.75 44.3
8 0.36 1.03 0.48 0.64 42.0
12 0.34 0.89 0.34 0.54 40.3
16 0.31 0.73 0.22 0.43 38.4

Table 4.5: Effect of sliding window size on tracking performance.

It is clear from the quantitative evaluation that the algorithm presented is very good at

making detection associations. This is supported by the low number of id switches and track

breaks on real data in Table 4.3 as well as on synthetic data in Table 4.4. When compared to

[70] on real data, the number of association errors is approximately cut in half. On synthetic

data, the number of swaps is higher than on real data, likely due to the lack of target appearance

information. The number of swaps is high for [70], because the algorithm had trouble keeping

track of the same ID on stationary targets. The number of swaps was low for moving targets,

but when the metric is averaged for all targets, it becomes very high. Track break performance

on synthetic data is worse than [70], but not by much, and it is still quite low.

The object detection rate in real data is low, but this is primarily due to vehicles that stop,

are not detected by background subtraction, or move slowly. When vehicles stop, there are

no detections from background subtraction available, and the algorithm is unable to track the

vehicle any further. Handling this case is the subject of our future work. On synthetic data,

the detection rate is nearly perfect. The false alarm metric is not applicable here.

The sliding window size is correlated with all tracking metrics. A longer window size gen-

erate more accurate tracking results, at the cost of a decrease in object detection rate. However,

even a small window size of 4 frames significantly improves tracking accuracy compared to a

69

Hungarian algorithm based tracker [70]. These results show that using a multiple-frame infer-

ence procedure is essential in achieving accurate tracking results in wide area aerial surveillance

imagery, where target appearance information is limited. Thanks to our fast inference proce-

dure, this multiple-frame inference can be very efficient, and run in real-time.

We implemented the algorithm just presented in C++. The implementation is available on

the author's website. The runtime of the algorithm depends on the number of detections in

the scene. When the number of detections per frame is small (≈ 100), the runtime is around

42 frames per second on a 1408x1408 video.

4.4 Conclusions

Wide Area Motion imagery presents additional challenges for tracking algorithms due to its

low sampling rate, limited resolution of targets to track, and a high number of targets. We

presented an algorithm that solves such large data association problems by using a long sliding

window and by performing a fast pruning step that significantly reduces the search space of

association hypotheses. We evaluated the proposed algorithm on real sequences from WAMI

imagery, and have shown that we obtain accurate tracking results in real-time and faster than

the competition.

70

C H A P T E R 5
Persistent Tracking

Persistent surveillance of large geographic areas from unmanned aerial vehicles (drones) allows

us to learn much about the daily activities in the region of interest. This is not only useful for

security applications, but it also has the potential to enable real-time traffic optimizations and

map updates. Therefore, understanding people's activities and movements requires multiple

target tracking algorithms that can cope with these characteristics.

Nearly all of the approaches addressing tracking in this imagery, including the one pre-

sented in the last chapter, are detection-based and rely on background subtraction or frame

differencing to provide detections [63, 70, 67, 45]. Recent work shows detection based track-

ing approaches are powerful [64, 8], but they assume a target detector with reasonable per-

formance can be learned. In wide area imagery, where the resolution of each target is limited

(about 20×10 pixels), training such a detector is difficult. Therefore, background subtraction

or frame differencing is used instead. This, however, makes it impossible to track targets once

71

they slow down or stop, because background models are often built over short time scale to

avoid introducing errors from parallax, lighting changes, or inaccurate stabilization (drift). Our

goal is to achieve persistent tracking, and losing targets every time they stop is not acceptable.

In this chapter, we present a multiple target tracking approach that does not exclusively rely

on background subtraction and is better able to track targets through stops. It accomplishes

this by effectively running two trackers in parallel: one based on detections from background

subtraction providing target initialization and reacquisition, and one based on a target state

regressor providing frame to frame tracking. The detection based tracker provides accurate

initialization by inferring tracklets over a short time period (5 frames). The initialization period

is then used to learn a non-parametric regressor based on target appearance templates, which is

able to directly infer the true target state from a given target state sample in every frame. When

the regressor based tracker fails (loses a target), it falls back to the detection based tracker for

reinitialization.

Our primary contribution in this chapter is a multiple target tracking approach for wide

area motion imagery that is better able to track targets through stops and brings us closer to

persistent tracking. We evaluated the proposed approach on real sequences from wide area

motion imagery and the results show increased object detection rate compared to competing

approaches while keeping id switches and track breaks low.

72

5.1 Related Work

One of the earliest works on tracking targets in wide area imagery is by Perera et al . [63]. De-

tections are obtained using background subtraction, formed into short tracklets using nearest

neighbor association, and the tracklets are linked using the Hungarian algorithm. The noisy

nature of background subtraction is recognized as a problem, generating split and merged de-

tections of targets. These are handled by generating a set of data association hypotheses and

approximately solving for the best hypothesis by iteratively augmenting the correspondence

cost matrix. This approach may not be scalable, and its reliance on background subtraction

for detection would make it difficult to handle stopping targets.

In the approach of Xiao et al . [90], there is some attempt to track stopping targets. In

addition to the background difference, a template-based appearance model and shape model

are used to generate three candidate detections for every target. Detections are then associated

with tracks using the Hungarian algorithm. Improved association is obtained by considering

road and spatial constraints. However, the spatial constraints require the enumeration of all

track-detection pairs, which is costly (in addition to the high complexity of the Hungarian algo-

rithm), and the road constraint, while useful, requires the prior knowledge of a road network.

As we will see later, our proposed regression model is already able to correctly estimate the

target state in the next frame without the need for spatial and road constraints.

Reilly et al . [70] also use the Hungarian algorithm for association of detections, but propose

to increase its efficiency by dividing the image into cells and computing the associations within

each cell. The matching cost between targets takes into account spatial proximity, velocity

73

orientation, orientation of the road, and local context between cars. The road constraint and

local context constraint, while useful in dense traffic, would be less reliable or difficult to

estimate in sparse traffic scenarios. Stationary targets are not considered, and in fact would be

difficult to associate with the proposed velocity orientation constraints.

In a more recent work of Keck et al . [45], classic multiple hypothesis tracking on detections

obtained with three-frame differencing is adopted. This presumably associates detections bet-

ter than the frame-to-frame Hungarian algorithm, but may be more costly. Nevertheless, a

real-time distributed architecture is presented. There is no provision for stationary targets.

In the last chapter we presented another approach that uses more than one frame of data to

infer tracks. This approach uses long temporal windows of 8 seconds (16 frames) for inference,

but is able to significantly reduce the space of possible data associations by efficiently pruning

detections that are inconsistent. Detections from background subtraction are used there as

well.

Most of the detection based approaches considered so far would be able to track station-

ary targets, if detections for those targets were obtained using an appearance-based classifier

rather than background subtraction or frame differencing. Even though we believe that this

is difficult and unreliable in our domain, there have been some attempts to do this [23, 53].

Doretto and Yao [23] obtained very good vehicle detection results in aerial imagery, even when

the vehicles were small. However, their experiments showed that the most important features

were color, which is not available in our imagery. Without color, detection performance was

much worse. In [53], an SVM with multiple kernels based on HoG and Haar features was

74

trained, and good vehicle classification results were obtained. At the same time, in a follow

up work, some of the same authors [78] argue the need for road network context in order to

reliably detect vehicles. Therefore, we conclude that a reliable appearance-based detection of

targets in our domain remains out of reach.

Alternative formulations of the multiple target tracking problem using network flows /

Linear programming have shown excellent results in pedestrian tracking [93, 64, 8]. However,

these methods have a few inherent assumptions unsuitable in our domain. They have weak

motion models, often require a prior specification of locations where objects enter the scene

and exit, and they usually express the association cost in terms of overlap of two detections,

which will not work in our domain where the frame rate is low.

The benefits of using a regressor rather than a classifier in tracking have been shown by

Williams et al . [88]. A regression model allows the direct inference of state from appearance

features, which makes it very efficient, because there is no need to exhaustively perform clas-

sification around the predicted position of the target. Furthermore, it is more accurate and

less susceptible to drift, because it actually learns the necessary adjustments to correct a dis-

placed (or drifted) target state from appearance features. For these reasons, we also adopt a

regression model in our approach.

75

Detection Based Tracker

Detections from
background subtraction

Infers tracklets over 5
frames

Regression Tracker

Non-parametric regressor

Template-based features

Operates frame to frame

Correspondence

Match tracklets to tracks
using their trajectories

matched unmatched

initialize

update

tracklets tracks

Figure 5.1: Overview of our approach. There are two trackers running in parallel comple-
menting each other.

5.2 Approach

Our goal is to achieve persistent tracking, which means being able to track targets as soon as

they begin to move, and as long as they are visible. This rules out exclusively relying on back-

ground subtraction or frame differencing, because these operators would not detect targets

when they become stationary. Target appearance modelling is needed. Since the resolution of

targets in our imagery is limited, learning a target class appearance model is difficult. There-

fore, we turn to learning a target instance appearance model, which is easier in the sense that

the appearance variation is smaller, but more difficult in the sense that we need to deal with a

small training set and have a limited computing budget when there are hundreds of targets to

track. We discuss our appearance model in Section 5.2.1.2.

Whatever appearance model we choose, we need to be able to initialize it and update it

when necessary (when target's appearance changes). This creates a chicken-and-egg problem,

because we are trying to learn an appearance model in order to track a target, but in order

to learn this model, we need to be able to detect the target in the first place. Similarly, when

target's appearance changes, we would like to update the model with the new appearance,

76

but we can not detect the target with the new appearance, until we have updated the model.

To solve both of these initialization and update problems, we propose to use an additional

tracker based on detections from background subtraction, which has minimal, if any, appear-

ance modelling. This tracker runs in parallel to and complements the main tracker based on

appearance modelling. We call the main tracker based on appearance modelling "regression

tracker", the reasons for which will become clear soon.

The detection based tracker from the last chapter operates on a sliding window of 5 frames,

and generates tracklets that correspond to moving targets every frame. These tracklets are

matched to existing tracks maintained by the regression tracker. Tracklets that match an ex-

isting track are associated with it for potential model update. Tracklets that do not match an

existing track are considered to be new targets, and are used to initialize the regression tracker,

which then takes control over tracking them. We said potential model update, because the

state and appearance model of a regression tracker is only updated when its failure is detected.

This brings significant computational savings.

Our approach is illustrated in Figure 5.1. The key components are a detection based

tracker, which is explained in the last chapter, a regression based tracker, explained in Sec-

tion 5.2.1, and tracklet-track matching and failure detection, explained in Section 5.2.2. We

now explain each of these components in detail.

77

5.2.1 Regression Tracker

We are given a moving target's location in the first 5 frames and our task is to track the target

as long as possible, even through stops. The usual way to proceed is to learn a classifier

(appearance model) from the initial examples, predict (sample) the target's state in the next

frame using a motion model, apply the classifier on each sample, update the target's state with

the samplemaximizing appearancemodel likelihood or posterior, and update the classifier (and

motion model if applicable) [4, 5, 42]. Unlike in other domains, motion modelling is important

here, because we cannot scan the entire frame (there are hundreds of targets, each with limited

resolution) and we cannot assume the target is going to be in approximately the same location

(the frame rate is low). Fortunately, our targets are vehicles, which have a relatively predictable

motion. They move with constant velocity, with short bursts of acceleration when they slow

down, turn, or speed up. We adopt the standard constant velocity motion model, but even for

more complex models, there will be instances where its prediction is not going to be accurate.

In those cases (vehicle accelerating when assuming constant velocity), we need to rely on the

appearance model to find the true target state using the noisy set of samples.

The critical piece in this framework is the classifier, and specifically the set of examples used

to train it. If it is a discriminative classifier and the positive examples are contaminated with

a negative example(s), or the negative examples are contaminated with a positive example(s),

accuracy of the classifier will degrade and the target's state is going to drift. Similarly, in the

generative case, if the examples are not aligned or contain varying amounts of background, the

classifier will learn the wrong function and the target's state is going to drift. This is a major

78

problem, which is why recent methods are careful about what examples are used to train the

classifier [42], or optimize a function that is more robust to this contamination [5]. In our

domain, where the target size is only 20× 10, even a small error of a few pixels can cause the

tracker to permanently lose track if the target is accelerating.

We argue that a binary classifier is not the appropriate way to model small transformations

(translations, rotations) of the target. It is trained to make binary decisions, and when a test

sample is not centered on the target, the target is arguably both "there" and "not there", and

the classifier's decision is going to be suboptimal. Classifiers can also provide confidence

or likelihood, but when we are sampling around our search region, there could be several

possibilities with the same or similar confidence, making it difficult to choose the correct one

just by searching for the maximum.

We believe that a much better way to proceed is to actually learn the effect of the displace-

ment of target's state on appearance. In other words, we should learn the effect of target's

translations or rotations on its appearance. This is possible when training a regressor rather

than a classifier, and was first introduced by Williams et al . [88]. During regressor training,

we provide examples labeled with displacements of the target state, such as (∆x,∆y,∆θ)

instead of class labels (0/1). During testing, when we are given a predicted state of the target,

we can use the appearance of the prediction to directly estimate the correct target state (using

the displacement returned by the regressor). For example, if we give a regressor examples

labeled with translations in the range [−4, 4]× [−4, 4], and then during testing we happen to

sample (-3,2) pixels away from the true target location, our regressor will return (-3,2). This is

79

(a) (b)

Figure 5.2: A regressor is able to output the displacement to the true target's state,
whereas a classifier is only able to say yes/no (left). However, this only works for samples
close to the target (right).

in contrast to a yes/no answer output by a classifier, which does not tell us as much. This is

illustrated in Figure 5.2a.

The primary advantage of a regressor, as first noted by [88], is efficiency. There is no need

to take many samples or do exhaustive search, because every sample gives us information

about the target's state. In the ideal case, only one sample is necessary to determine where the

target really is. This comes under one condition though, and that is the target must be at least

partially visible in the location we want to regress. If the target is not visible, in general there is

no information one can use to determine the target's location. The regressor always outputs

a value, but the value in this case would be meaningless. In [88], this problem is solved by

training a classifier in addition to a regressor to determine when the target is completely out

of bounds. In this work, we use a more robust unsupervised approach to solve this problem.

Computational savings are still made, but even without the savings, we believe that for the case

of the target being partially visible, a regressor is an inherently more powerful function than a

classifier (much less likely to cause drift). This is illustrated in Figures 5.2 and 5.3.

80

The disadvantage of using a supervised approach to classify samples as being valid or

invalid for regression is that we need to be careful about what training examples we use in

training. The size of the training set is limited by computational constraints, which makes it

especially difficult to choose good negative examples, since their variation is large. Therefore,

we use the following unsupervised approach, which we have observed to perform better than

using an SVM as in [88].

The key idea is to recognize that the output of the regressor is going to bemore trustworthy

when multiple samples taken around the search region generate the same target state. In other

words, when we do regression multiple times on different samples, we would expect a cluster

to form around the true target state. When the samples are taken from areas where the target

is not visible, the output of the regressor is going to be unpredictable and not going to create

clusters. Accordingly, we would like to find the largest cluster of target state estimates with the

smallest variance. In practice, with a regressor trained to output translations, we build a 2D

histogram of the target state estimates, where the bins are of some small fixed size, such as

3× 3. We then choose the bin with the highest number of samples as the best cluster. If the

number of samples is higher than some threshold, these samples are then all considered valid.

Alternate schemes to find the best cluster, or classify samples as valid/invalid can be used, but

this approach has worked well for us (and better than an SVM).

Figure 5.3 shows an example on how this approach works when a vehicle is decelerating.

The left side of the figure shows that the motion model assumes the target is moving faster

81

Figure 5.3: A regressor improves target state estimates. The left image shows samples
before a regressor is applied. The right image shows the same samples after a regressor
is applied. Crosses colored in red denote the final set of valid samples.

than it really is (the vehicle is actually coming to a stop). As a result, the samples are biased to-

wards the front of the vehicle and many are not even on the target. After applying a regressor,

the variance of the samples is significantly decreased. Furthermore, the valid samples identi-

fied using our unsupervised approach increase the precision even more, correctly locating the

center of the target.

The regression tracker algorithm is summarized in Algorithm 1. The main components

of the tracker are a regressor, feature extractor, and a motion model. We explain these com-

ponents next.

5.2.1.1 Non-Parametric Regression

In regression we are trying to estimate the quantitative value of a function f at a previously

unseen point x0. In our application, we are trying to estimate the target's displacement given

some features extracted at a sample image location. There are various forms of regression, each

with different assumptions about the structure of the feature space, and number of parameters.

An RVM was used by Williams et al . in [88]. Its advantage is that it is fully probabilistic, but

82

Algorithm 1 Regression Tracker
Input: zt = target state in frame t,M = motion model,

ϕ = feature extraction, reg = trained regressor
Output: zt = target state in frame t+ 1

// sample from the motion model
1: S = {x | x ∼ M(zt)}

// regress each sample
2: R = {N (x;µ,Σ) | N (x;µ,Σ) = reg(ϕ(s)) ∀s ∈ S}

// find the valid subset of samples
3: Rµ = {µ | N (x;µ,Σ) ∈ R}
4: h = histogram(Rµ)
5: bmax = argmaxh(b)
6: V = {N (x;µ,Σ) | µ ∈ h[bmax] ∧N (x;µ,Σ) ∈ R}

// check the uncertainty of the subset
7: Vµ = {µ | N (x;µ,Σ) ∈ V }
8: if |Vµ| < t1 ∨ det(cov(Vµ)) > t2 then
9: return

10: p(x) =
∑

N∈V N (x;µ,Σ)
11: x∗ = argmax p(x)

// reduce false alarms
12: check frame difference is consistent with est. motion
13: verify blob-like appearance

14: zt+1 = updateMotionModel(x∗)

83

it comes at a cost of more computationally expensive training. In this work we use a simple,

non-parametric (kernel) regression called the Nadaraya-Watson kernel-weighted average [33].

The regressor is of the form

f(x0) =
∑N

i=1 k(x0, xi)yi∑N
i=1 k(x0, xi)

(5.1)

where (xi, yi) is the training set, and k is the kernel function. In our application, xi would

be a feature vector and yi would be the corresponding displacement in the target's state, such

as (∆x,∆y) when regressing target's translation or (∆x,∆y,∆θ) when regressing target's

translation and rotation. In addition to the average, we can estimate uncertainty in the regres-

sor's ouput as the kernel-weighted covariance. Therefore, our regressor actually provides a

Gaussian distribution N for each sample it evaluates.

There are several choices for the kernel function, and we adopt one based on the KL-

divergence [61], since our features are effectively probability distributions (see below). The

kernel function is

k(x0, xi) = exp(−λKL(x0, xi)) (5.2)

where λ is a smoothing parameter determining the width of the local neighborhood, and KL

denotes the Kullback-Leibler divergence. We determine the value of λ empirically.

84

5.2.1.2 Features for Regression

Some of the recent state of the art methods have relied on templates as their features of

choice [42, 22]. We follow this work, and also use template-based features for regression.

The template model is built from the 5 examples obtained using the detection-based tracker.

It is rotationally variant, and we model target orientation as part of our state. When estimating

the template, we rotate all the examples to a canonical orientation and scale them to a canonical

size of 20× 10. The template is estimated as the average canonical image. When evaluating a

test sample, it is also first transformed to this canonical frame. The orientation of the initial 5

examples is estimated by fitting a quadratic function to the trajectory, and using the tangent at

all positions as the target orientation. A quadratic function is used to handle tracklets that are

initialized during turns. The bounding boxes of the initial examples can have different sizes,

so we also estimate one fixed size of the target using least squares (given the target orientations

and unoriented bounding boxes).

The small size of our targets can be a problem when using templates, because a relatively

large portion of the template can be background. To avoid the influence of the background,

we also estimate a target shape mask using thresholded background difference images of the

5 examples. The shape mask is again expressed in the canonical frame. When measuring the

difference between a template and a test sample, the difference is only calculated for the pixels

inside the shape, thus minimizing the influence of the background. Figure 5.4 illustrates the

template learning process.

85

Figure 5.4: Target template as well as the shape mask is learned from 5 examples. The
template is expressed in a canonical coordinate frame. Figure 5.3 shows the original
target orientation and size.

Given this template, we would generate a training set for regression by displacing the

template with known varying amounts of translation (and possibly rotation). See Figure 5.5

for an illustration. During test time, we would measure the difference between a test canonical

image and each of the training examples (displaced versions of the template), and measure the

similarity of each training example to the test sample using a kernel function. This would work

in theory, but since our targets (and canonical images) are small with little texture, the regressor

might have a difficulty recognizing the difference between small displacements. Therefore, we

add more context. Instead of basing the kernel weight on the difference of a test sample

with one training example, we base the kernel weight on the distribution of differences between

several training examples.

The feature vector is computed as follows. Assume we are training a regressor to predict

translations in the range [−M,M] × [−N,N]. The number of displaced versions of the

template and its corresponding mask is thenK = (2M + 1) ∗ (2N + 1). Reasonable values

86

Figure 5.5: Subset of the displaced versions of the template used in regression. Each
image has a corresponding shape mask.

ofM and N areM = 6 and N = 4, giving K = 117. Let's denote each displaced template

by Ti and each displaced mask by Si. Given a test sample I (transformed to the coordinate

frame), the feature vector x is

x =
[
g(I− T0)

Tg(I− T0), · · · , g(I− TK)
Tg(I− TK)

]
(5.3)

where

g(D[j]) =


10 Si[j] ≤ 128

min(|D[j]|, 10) otherwise
. (5.4)

The size of the feature vector is K , and each element is the sum of the squared differences

between the test sample and a displaced template. However, the differences are truncated

to be no larger than 10. Furthermore, for pixels outside of the shape mask, the difference is

automatically 10. In a way, we are counting the number of pixels that have the same intensity as

the template, where "same" is defined as an intensity difference less than 10. Pixels outside of

the shapemask are penalized equally, nomatter what the difference in intensity. By normalizing

this feature vector we get a probability distribution that could be used in our kernel function.

87

Since many of the elements of the feature vector have similar values (probabilities), to make

the differences in the distributions more pronounced, we do an additional normalization. We

subtract the minimum value, set those elements that would be 0 to a very small number, such as

0.0001, and renormalize to a distribution. This gives us a larger variation in the KL-divergence.

5.2.1.3 Motion Modelling

As mentioned earlier, we adopt a constant velocity motion model. Sampling from this motion

model is equivalent to sampling from a Gaussian distribution with a mean corresponding to

the predicted position of the target in the next frame. The position of the target in the next

frame is predicted by adding the current estimate of the velocity to the current position. We

estimate target velocity using a standard Kalman filter.

The covariance of the Gaussian distribution should reflect the uncertainty in the predic-

tion. When the target, a vehicle in our case, is moving at high speed, this uncertainty is small

in the direction perpendicular to the moving direction, and high in the direction parallel to the

moving direction. This is because vehicles cannot make a quick turn when undergoing fast

motion. On the other hand, when a vehicle is moving at a slower speed, the uncertainty is high

in all directions, because the vehicle can make a sharp turn in any moment. Therefore, we use

a velocity-dependent covariance, which is omnidirectional at slow speeds and unidirectional at

high speeds.

88

5.2.2 Tracker Correspondence

The key idea of our proposed tracking algorithm is the use of two trackers that run in parallel

and complement each other. For this to work, we need to have a correspondence between

targets from each tracker. We determine this correspondence by comparing the trajectories of

tracklets from the background subtraction based tracker with trajectories of tracks from the

regression tracker. More specifically, we match a tracklet with a track that has the maximum

overlap with it. If this overlap is greater than some threshold, and if the tracklet and track are

not moving in opposite directions, they are associated together.

Once we have this correspondence, we do a "reconciliation" step in every frame where

we determine for each target whether the regression tracker has lost track and needs to be

updated with the associated tracklet. We do this by first checking whether the two trajectories

of a track and its corresponding tracklet are diverging. This is determined by measuring the

amount of overlap over time. If the overlap decreases in every frame by more than a threshold,

the trajectories are deemed to be diverging, and we need to determine which tracker to trust

more. If the trajectories are converging, no further action is necessary.

To determine which tracker to trust more, we generate a feature vector containing tracker

confidence values from both trackers. The confidence value for observations estimated by the

detection-based tracker is the max-marginal probability (belief) resulting from MAP inference

in [67]. The confidence values for observations estimated by the regression tracker are the

probability from the mixture-of-Gaussian distribution on line 10 of Algorithm 1, as well as a

likelihood value returned from a blob appearance model. The blob appearance model is not

89

discussed here, but it is a relatively simple model based on a center-surround feature. This

feature vector is then used in a logistic regression classifier to make a decision which tracker

to trust more. This classifier is trained offline with manually labeled examples of diverging

trajectories. The labels are binary, indicating which trajectory is the correct one.

If the regression tracker is classified to be less trustworthy than the detection based tracker

for a particular target, we initialize a new regression model from the tracklet, and add it to the

list of regression models maintained by the regression tracker. In other words, we only update

the appearance model in the regression tracker when it fails. When a regression tracker has

multiple regression models, Algorithm 1 is applied for each, and the regression model with the

smallest determinant on line 8 of the Algorithm is chosen. We limit the number of regression

models to 10 most recent. We also reset the motion model in the regression tracker to follow

the motion of the tracklet.

5.3 Results

We evaluated the proposed algorithm on sequences from a proprietary wide area aerial imagery

dataset. The dataset was stabilized, georeferenced, and divided into several 2K × 2K tiles

before tracking. We selected two tiles for evaluation, each 2791 frames long, one with light

traffic and few stopping cars, the other with heavy traffic and many stopping cars.

Several metrics were used to measure performance: object detection rate (ODR), false

alarm rate (FAR), mean cumulative swaps of tracks (SWPS), and mean cumulative broken

tracks (BRKS). Object detection rate is defined as the fraction of detections in the ground

90

Proposed [67] [70] (p = 1)*
Object Detection Rate 0.74 0.69 0.76
False Alarm Rate 4.71 1.88 54.3
Track Swaps 1.64 1.61 8.15
Track Breaks 0.91 0.68 2.00
Frames Per Second 0.39 > 5 3.58

Table 5.1: Comparison of the proposed approach with competing methods on a tile with
light traffic.

Proposed [67] [70] (p = 1)*
Object Detection Rate 0.67 0.63 0.66
False Alarm Rate 27.5 27.3 137
Track Swaps 5.22 6.58 9.01
Track Breaks 2.04 1.54 2.65
Frames Per Second 0.07 > 2.5 2.35

Table 5.2: Comparison of the proposed approach with competing methods on a tile with
heavy traffic.

truth found in the estimated tracks. False alarm rate is defined as the average number of false

detections in estimated tracks in every frame. Mean cumulative swaps of tracks is defined

as the average number of swaps (ID switches) in every ground truth track (over its lifetime).

Mean cumulative broken tracks is defined as the average number of breaks in every ground

truth track (over its lifetime). A break happens when a ground truth track is not matched

to any ID in the next frame. These last two definitions are based on [71]. Computational

efficiency was measured by the average number of frames processed per second (FPS). The

results are shown in Tables 5.1 and 5.2.

We compared our approach to the one presented in the last chapter and [70]. *Wewere able

to run [70] on only the first 1024 frames, which gives it some advantage. The object detection

rate of the proposed approach is significantly better, indicating targets are being tracked longer,

including through stops. The false alarm rate increased on the easier tile, but stayed the same

91

on the more difficult one. One of the factors behind false alarms is when the regression tracker

loses track of the target and locks on to something in the background. When this happens,

it's usually because the regression model was not initialized properly. The regression model is

initialized using detections from background subtraction, and when a target is moving slowly,

these detections can be noisy. As a result, the shape mask is going to be incorrectly estimated.

With the wrong shape mask, our template based features do not work as well, and regression

performance is degraded.

The id switch rate (track swaps) is about the same in both approaches. This is because

both approaches do not do any joint inferencing of target states. Since the states of targets are

estimated independently, id switches are possible and not mitigated. Jointly tracking multiple

targets with explicit constraints between them is the subject of our future work.

Track breaks are about 33% higher in the proposed approach. We believe this may be due

to the weaknesses of the motion model. Either our covariance is too small for certain cases, or

it is big enough, but we use a too small number of samples for cluster formation. If clusters do

not form, our algorithm will declare it is too uncertain about the target state, and not estimate

an observation for that frame. Subsequently, if there is no corresponding tracklet to recover

from, or the logistic regression classifier makes the wrong decision, a break will be generated.

92

5.4 Conclusions

Current approaches for multiple target tracking in wide area imagery often rely on background

subtraction, which is noisy and does not provide detections when targets stop. We have pre-

sented a multiple target tracking approach that does not have this complete reliance and is

better able to track targets through stops, bringing us closer to persistent tracking. Results

on wide area motion imagery show increased detection rates, with limited increases in false

alarms and track breaks.

93

C H A P T E R 6
Using 3D Scene Structure to Improve

Tracking

In the previous chapter we have introduced a multi-object tracking algorithm that estimates

trajectories of all moving objects in the video and have shown good results. Nevertheless, there

still remain "corner" cases, which require a fundamentally different approach to be solved. One

such case is when the moving object becomes occluded long enough for motion prediction to

fail, or if the occlusion is short, but the object does not have a distinguishing appearance for

successful reacquisition. These cases are difficult to solve without additional constraints. Yet,

they occur often enough to warrant attention.

Again, we focus on tracking vehicles from amoving airborne platform in wide area surveil-

lance, where the kind of occlusions just described happens when vehicles move behind build-

ings and other structures. The appearance of vehicles here is very weak, usually only allowing

94

Figure 6.1: Automatically computed occlusion map (right) for the image on the left.

us to distinguish light-colored vehicles from dark-colored vehicles, and small vehicles from

large vehicles. Tracking vehicles across such occlusions is practically impossible without know-

ing more information. Here we explore the use of known 3D scene structure to estimate

dynamic occlusion maps and improve tracking performance.

An occlusion map as used here is a binary map, which indicates what regions of the image

are occluders of moving objects. See Figure 6.1 for an illustration. The occlusion map is not

necessarily complete, there may be occluders which are not marked in the map (such as trees).

Furthermore, the occlusion map may not be static for the duration of the image sequence

due to camera motion. Importantly, the occlusion map is automatically computed from the

video stream by estimating the camera pose in geo-coordinates and projecting a database of

geo-referenced 3D models of buildings (occluders) to the image.

An occlusion map is useful, because it gives us the ability to detect occlusion events: a ve-

hicle becoming occluded, a vehicle becoming visible. Analyzing these occlusion events, we can

determine sources and sinks of traffic in the scene. While sources and sinks can be estimated

95

without the use of an occlusion map [82], such techniques are not robust enough to be used

in our domain, where many false tracks arise due to the parallax motion of structures off the

ground plane. By matching a sink with a source, we can apply an ordering constraint to solve the

tracking problem: the sequence of vehicles becoming occluded should be approximately the

same as the sequence of vehicles becoming visible. This sequence alignment problem is solved

using dynamic programming. Note that by solving this problem we are able to correctly match

vehicles before and after occlusion even if they stop or change motion while being occluded.

The primary contribution of this chapter is a novel use of 3D scene structure to improve

tracking performance for objects moving through occlusions where motion prediction fails

and/or when the appearance of objects is only weakly discriminative. We have evaluated the

algorithm on real sequences from a publicly available wide area motion imagery dataset [50]

and have shown that track fragmentation decreases and outperforms the Hungarian algorithm.

6.1 Related Work

The most related work to ours is the use of geo-spatial information to aid tracking [89, 90]. A

recent example of this is work by Xiao et al . [89], where the camera pose is estimated in geo-

coordinates to enable the assignment of semantic labels (building, tree) to image regions, and

for road detection. The paper shows an increase in tracking accuracy when depth information,

road network, and semantic scene segmentation is in use. However, there is only a a brief

mention of using this information for occlusion handling in tracking, and no algorithm is

96

given. In the followup work [90], an improved scalable tracker using GIS road network is

presented, but again there is no mention of occlusion handling.

Tracking objects through occlusions has been considered most recently by Kaucic et al .

[44] and Perera et al . [63]. In the earlier work of Kaucic, an occlusion map is estimated by

segmenting the image into regions and training a classifier to label each region as one of a

"building, road, grass, or vehicle." This occlusion map is then used to constrain location of

image features for video stabilization, filter out false moving object detections, and detect when

objects are likely to become occluded. One disadvantage of computing an occlusionmap using

image features is that it is generally not as accurate as one computed using known 3D scene

geometry. Tracks before and after occlusion are linked using the Hungarian algorithm, where

the pairwise cost is based on appearance similarity (color histogram matching) and motion

prediction (constant velocity model).

Perera et al . extend this work by incorporating merge and split hypotheses to handle the

many-many correspondence between moving region detections and objects. The Hungarian

algorithm is again used as the computational engine for determining correct track associations.

Template matching is used to define an appearance cost and a linear motion model to define

a kinematic cost.

Besides the Hungarian algorithm, another class of methods for tracking occluded objects

is based on a tracking context [1, 91, 28]. Our work also falls in this category as tracking con-

text is implicitly formed when sequences of tracks are matched against other track sequences.

In [1], the context is other moving objects, called predictors, whose motion correlates with

97

that of the occluded object. The predictors are used to predict the location of the occluded

object and associate it with the correct track upon reacquisition, and are found using Lyapunov

Characteristic Exponent. A more sophisticated approach is presented in [91], where an object

is continuously tracked collaboratively with auxiliary objects (the context), and the relationship

between the auxiliary objects and the object of interest is modeled using a graphical model.

Finally, most recently Grabner et al . presented an approach where the context of an object is

a set of "supporters," which vote for the location of the object being tracked. As long as the

supporters are visible, the location of the occluded object can be accurately determined.

The task of the driving algorithm in this work is to align two sequences of tracks. Sequence

alignment is a well-known pattern recognition technique that has mostly seen its use in speech

[72], and gesture (action) recognition [20, 10] to temporally align two sequences and in stereo

correspondence to estimate disparities [76]. The classic method is Dynamic Time Warping

(DTW), which is a dynamic programming algorithm to find the optimum non-linear alignment

of two sequences. To our knowledge, sequence alignment has not been used before to track

objects through occlusions.

6.2 Approach

The goal of our work is to improve tracking of moving objects, especially when they become

occluded for a significant amount of time. We focus on the case where the occlusion is long

98

enough to cause an object's track to break and become fragmented. The output of our algo-

rithm is a track correspondence, which indicates what tracks should be merged or linked with

other tracks.

As indicated in the introduction, we are concerned with tracking vehicles from a moving

platform in wide area surveillance. Here, the appearance of vehicles is not very discriminative,

and cannot be solely relied upon for correct track linking. Therefore, as has been done before,

we combine appearance with a kinematic model, at least when the kinematic model is infor-

mative. Actually, the strength of our method is primarily evident when the kinematic model

is unable to correctly predict a vehicle's location after occlusion.

We are able to accomplish this by applying an ordering constraint, which says that the

sequence of vehicles becoming occluded is approximately the same as the sequence of vehicles

becoming visible after occlusion. In order to apply this constraint, we need to be able to reliably

detect sources and sinks of traffic in the imagery and match them up correctly. A traffic sink

is where vehicles become occluded and a traffic source is when they become visible again.

Dynamic occlusion maps are essential for a robust estimation of these sources and sinks. The

occlusion maps are computed automatically by estimating the camera pose in geo-coordinates

and using a database of geo-referenced 3D models of buildings. These 3D models can be

computed from imagery using dense 3D reconstruction techniques, or can be acquired from

online sources [27] as we have done in this work.

A flowchart of our approach is in Figure 6.2.

99

Figure 6.2: Our framework for tracking vehicles across long occlusions.

6.2.1 Estimating the Dynamic Occlusion Map

The dynamic occlusionmap is estimated by projecting a database of geo-referenced 3Dmodels

of buildings to the input video stream. Every pixel that is written during rasterization is marked

as occluding. The occlusion map needs to be in agreement with the underlying imagery, but we

do not require perfect registration. Accurate estimate of the camera pose in geo-coordinates

enables us to achieve good registration.

GPS and IMU metadata associated with the input imagery provide a good initial estimate

of the camera pose, but can not be used directly. To refine this initial estimate, we register the

input imagery with a reference image (map). The input image transformation is modeled by

a homography. We perform image registration in a fairly standard manner: by hierarchically

estimating the image transformation, incrementally increasing the transformation complexity,

using state of the art image features, and using a robust model estimator.

100

First, a Gaussian image pyramid is built for both the reference image and the video image.

The images are first registered at the top of the pyramid, then the images at the next level down

are warped using the just estimated transformation, registered again, and the process contin-

ues all the way down to the bottom of the pyramid which is at the highest resolution. This

hierarchical process significantly increases the speed and accuracy of the registration, because

at each level, feature correspondences only need to be found in a small local neighborhood.

The image transformation complexity is simple at the top of the pyramid and increases

on the way down. More specifically, at the top levels of the pyramid, only image translation

is estimated, and a full homography transformation is not estimated until the bottom levels.

This is important, because at the top levels of the pyramid, the image resolution is not high

enough to support a complex image transformation, so the estimation procedure is unstable.

State of the art image feature descriptors are used to establish correspondences at every

level of the pyramid [86]. These are accurate and fast to compute. Finally, when estimating

image transformation, RANSAC is used to provide a robust estimate. This is necessary to

avoid using image correspondences on buildings and only make use of correspondences in

planar areas.

Once we have a set of correspondences between the reference map and the video image

that satisfy the final homography estimate, we solve for the camera pose by assuming all the

correspondences lie on a plane. The algorithm presented by Schweighofer and Pinz [77] is

used for this step. It provides a robust estimate of the pose by explicitly avoiding a solution

that is a local minimum of the objective function.

101

Figure 6.3: Example of the accuracy of the camera pose estimation. Accurate estimate of
the camera pose results in a good registration of the 3D models (left) and occlusion map
(right) with the image sequence.

The result of occlusion map estimation is illustrated in Figures 6.1 and 6.3. The average

registration error is 10 pixels.

6.2.2 Tracking

Tracks of vehicles in the image sequence can be estimated by any multi-object tracking algo-

rithm. By taking advantage of the just computed occlusion map, the number of false tracks can

be significantly reduced. In our implementation, we used a tracker introduced in the previous

chapter.

102

6.2.3 Estimating sources and sinks

Our goal is to track vehicles even when they become occluded for a long time. Such long

occlusions cause a tracking algorithm to lose a vehicle's track and initiate a new one when the

vehicle becomes visible again. To achieve our goal, we need to find these false initiations and

merge them with the correct earlier tracks that were prematurely terminated.

False initiations due to occlusion form a traffic "source" -- a location where many tracks

originate. Premature track terminations due to occlusion form a traffic "sink" -- a location

where many tracks stop. Of course, it is possible for a single vehicle to become occluded and

reappear again. However, these locations may be difficult to identify with high confidence

without other information, such as the road network. Fortunately, we can easily work around

this problem by just waiting long enough for more tracks to enter the source and leave the

sink.

The dynamic occlusion map is essential in detecting sources and sinks reliably. Source

detection begins by taking all tracks that we have estimated (by the end of the sequence or a

sliding temporal window), and computing the distance from the starting point of the track to

the nearest occluder pixel. If this distance is "small," we record a leave-occlusion event at the

track's starting location. The definition of "small" depends on the accuracy of the estimated

occlusion map. In our work, we have used a value of 20 pixels (15 meters on the ground).

All the leave-occlusion events are then clustered in the (x, y, x′, y′) space, where (x, y) are

the image coordinates of an occlusion event, and x′ = x+ c · vx, y′ = y+ c · vy, where vx, vy

is the moving direction of the associated track. The constant c is used to give an appropriate

103

scaling to the direction vector, and it is set to 20 in our experiments. Agglomerative clustering

is used for this task: initially a cluster is created for each event, and the closest clusters are

repeatedly merged until the distance between them reaches a maximum. The distance between

two clusters is the Euclidean distance between the cluster centers. The only parameter of this

clustering technique is the stopping criterion. In our work, we have used a value of 20 pixels.

Note that due to the moving camera, the occlusion map is dynamic, and the occlusion events,

while localized, will not be generated at a single point. The resulting clusters are the desired

traffic sources.

Sink detection proceeds similarly, the only difference being that now we compute distance

from the ending point of a track that has been declared terminated by the tracking algorithm.

If this distance is small, we record an enter-occlusion event. After clustering these events we

get the desired traffic sinks.

For efficiency, a distance transform is computed for an occlusion map. All the required

distance calculations then only require a look up operation. To put this procedure into per-

spective, in a 801x233 sequence of 200 frames, we recorded 50 leave-occlusion events and 35

begin-occlusion events. After clustering, 4 sinks and 7 sources are produced. See Figure 6.4

for an illustration.

6.2.4 Source-Sink correspondence

After estimating sources and sinks, we need to know which sink corresponds with which

source. Knowing this correspondence, we can then take the sequence of tracks entering the

104

Figure 6.4: Example of source and sink detection. The top-left figure shows all occlusion
events and the direction of travel for each one. The top-right figure shows the resulting
clusters -- sources and sinks. Red circle indicates enter-occlusion and green square indi-
cates leave-occlusion. The bottom figure shows correspondences between sources and
sinks.

sink (becoming occluded) and align it with a sequence of tracks leaving the corresponding

source (reappearing). The difficulty of this correspondence problem depends on the com-

plexity of the occlusion. An occlusion where one sink is connected to more than one source

(a one-many relationship), is considerably more difficult to handle than an occlusion with a

one-one relationship between sink and a source.

In this work, we assume a one-one correspondence between sources and sinks, which is

often satisfied in aerial surveillance imagery over urban areas. This does not mean that all

vehicles entering a sink must leave a corresponding source. It is possible that a vehicle parks

behind the occluding building, or more simply that a tracker does not track every vehicle

105

entering / leaving the occlusion. However, we do expect that most vehicles entering a sink will

in fact reappear at the source.

Using this assumption, we find a corresponding source for every sink by setting up a

weighted bipartite graph matching problem, and solving it using the Hungarian algorithm.

The pairwise matching similarity is defined as:

cij = C1 ∗ (d1 + d2) + (C1/d) + C2 ∗ s(i) ∗ s(j) (6.1)

where d1 is the dot product of the direction of traffic entering the sink with the direction

of traffic leaving the source, d2 is the dot product of the direction of sink to source with

the direction of traffic entering the sink, d is the distance from sink to source, s(i) is the

number of occlusion events (tracks) in cluster i, and C1, C2 are constants that weight each

factor appropriately and make the matching similarity an integer. In our experiments, C1 =

1000, C2 = 100. The Hungarian algorithm will return an assignment of sinks to sources that

maximizes this similarity. Furthermore, we require that the angle between the direction of

traffic entering the sink and leaving the source is less than 60◦. A source-sink pair that does

not satisfy this is removed from consideration. See Figure 6.4 for an illustration.

6.2.5 Sequence alignment

With an established correspondence between a sink and a source, our task is to match the se-

quence of tracks at the sink to the sequence of tracks at the source. Bymatching two sequences,

106

and not two sets (as is customary with a Hungarian algorithm), of tracks we are applying an ad-

ditional ordering constraint to solve the track linking problem. Using this additional constraint

is essential when motion prediction fails (due to long occlusion) and/or when the appearance

of the tracked objects is not very discriminative.

To solve the sequence alignment problem, we use a standard dynamic programming algo-

rithm that is similar to Dynamic TimeWarping and has been extensively used in computational

biology. Let the sequence of tracks at the sink be X = x1x2 · · · xm, and let the sequence of

tracks at the source be Y = y1y2 · · · yn. An alignment of the two sequences is a set of or-

dered pairs of tracks in X and Y such that there are no "crossing" pairs. In other words, if

(i, j), (i′, j′) is in our solution, and i < i′, then j < j′ [48]. This often holds in practice. To

handle the case of a vehicle becoming out of order during the time it is occluded, we allow

some tracks in X and Y to not match at all. For each such "gap," a penalty of δ is incurred.

For every pair of tracks that do match, there is a matching cost ξxiyj . The cost of an alignment

is the sum of its gap and matching costs. A dynamic programming algorithm minimizes this

cost with the following recurrence [48]:

f(i, j) = min[ξxiyj + f(i− 1, j − 1), δ + f(i− 1, j), δ + f(i, j − 1)] (6.2)

In our domain, the matching costs ξ are computed from 4 terms, appearance term α, size

term β, kinematic term γ, and feasibility term τ :

ξxiyj = τ(xi, yj) ∗ γ(xi, yj) ∗ (α(xi, yj) + β(xi, yj)) (6.3)

107

The feasibility term is defined as

τ(xi, yj) =


1 link yj with xi is feasible

∞ otherwise
(6.4)

where linking yj with xi is feasible if yj becomes visible at a time after xi becomes occluded,

and given the distance and time between xi and yj , if the acceleration from xi to yj is physically

possible (≤ 10m/s2).

The kinematic term is defined as

γ(xi, yj) = min(|t′j − tj|, G)/G (6.5)

where t′j is the predicted frame number of track xi at the first location of yj , and tj is the

actual frame number of track yj at its first location. By clamping this time difference toG, the

kinematic cost becomes unimportant for sequences of tracks which stop behind an occlusion,

or otherwise have unpredictable motion. At the same time, if the motion prediction succeeds,

the appearance and size terms become unimportant. The parameter G is set to 8, which

corresponds to a time difference of 4 seconds in our imagery.

The appearance term is defined as

α(xi, yj) = min(D(h(xi), h(yj)), A)/A (6.6)

D(p, q) = 0.5 ∗ (DKL(p||q) +DKL(q||p)) (6.7)

108

whereDKL is the Kullback-Leibler divergence, and h(·) is a probability distribution of image

intensity on the foreground of the object. This distribution is calculated from a histogram of

16 bins. The parameter A is estimated as the maximum value of D(p, q) in a training set of

11,208 appearance term computations. In our experiments, this value is 3.5.

The size term is defined as

β(xi, yj) = min(|s(xi)− s(yj)|, B)/B (6.8)

where s(·) is the median size of the tracked object. The parameter B is estimated as the

maximum value of |s(xi)− s(yj)| in a training set of 11,208 size term computations. In our

experiments, this value is 17.

The parameter δ controls the likelihood of tracks becoming out of order. When it is 0,

tracks before and after occlusion can be matched with an arbitrary number of gaps. When it

is high, the first track entering an occlusion will always match the first feasible track leaving an

occlusion. In our experiments, we have empirically determined the value of δ to be 0.40.

The alignment of tracks which minimizes the cost function f(i, j) is the solution to our

tracking problem. That is, by merging those tracks the vehicle continues to be tracked after

the occlusion.

109

6.2.6 Computational Complexity and Implementation

The computational complexity of the sequence alignment algorithm is O(nm), where n,m is

the number of tracks in a sequence. In practice, this number is often small, so the algorithm

is quite efficient. We have implemented the algorithm just presented in C++.

6.3 Results

We have evaluated the proposed track linking algorithm on sequences captured from an air-

borne sensor. The sequences come from the publicly available CLIF 2006 dataset [50]. This

dataset is captured at roughly 2 Hz, and it is in grayscale. It is an example of persistent surveil-

lance imagery, where the airplane makes several circular flyovers around the campus of Ohio

State University.

Our database of geo-referenced 3D models has 90 models of buildings that were down-

loaded from Google Earth. For the geo-registration step of our camera pose estimation, we

have used a reference image from USGS [83]. Camera calibration was achieved by manually

selecting correspondences and performing bundle adjustment.

A baseline tracker (Chapter 4) was used to estimate tracks in 5 sequences. The sequences

are 150-200 frames long each, and roughly 500x200 pixels in size. We have selected those

subregions of CLIF for which 3D models are available. In sequences 1 and 3, vehicles makes

a stop while being occluded. Fragmented tracks in all sequences were manually identified in

the tracking output. After running the proposed algorithm on each sequence, we manually

verified the correctness of the track linking suggested by the algorithm. Ideally, all of the

110

Proposed Algorithm Hungarian Algorithm
Fragmented Correctly Incorrectly Correctly Incorrectly

Tracks Linked Linked Linked Linked
Seq 1 9 5 2 2 7
Seq 2 4 3 3 3 4
Seq 3 3 1 6 1 7
Seq 4 2 1 2 1 3
Seq 5 6 4 1 3 3
Sum 24 14 14 10 24

Table 6.1: Quantitative evaluation of the proposed track linking algorithm.

fragmented tracks identified earlier would be correctly merged together. The results can be

seen in Table 6.1.

We compared the performance of the proposed sequence alignment to the widely used

Hungarian algorithm. The matching cost used in the Hungarian algorithm was exactly the

same as the one used in sequence alignment, but scaled and rounded to an integer value. The

results of this comparison can also be seen in Table 6.1.

Examples of linked tracks in the sequences we tested can be seen in Figure 6.5, 6.6, 6.7,

and 6.8.

The results show that the proposed algorithm is effective in linking tracks through occlu-

sions. More than half of the fragmented tracks were successfully linked together. In contrast,

the performance of the Hungarian algorithm is quite poor, with only a small number of tracks

correctly linked and with a significant number of ID switches (incorrect links). Because we

are using the same matching cost between tracks in both the sequence alignment problem

and in weighted bipartite graph matching, we conclude that the ordering constraint is in fact

responsible for the increased performance.

111

Figure 6.5: Linked tracks by the proposed algorithm (left) and Hungarian algorithm (right).
Note that in this sequence, the vehicles stopped while being occluded. The only correct
link by the Hungarian algorithm is the leftmost one. The top row shows vehicles before
occlusion and the bottom row shows the same vehicles after occlusion.

Figure 6.6: Correctly linked track by both the proposed algorithm and Hungarian algo-
rithm. This is a short occlusion case, where motion prediction successful. This shows
the algorithm works just as well in these cases. The top row shows the vehicle before
occlusion and the bottom row shows the same vehicle after occlusion.

112

Figure 6.7: An example where both algorithms fail to link with the correct track, which is
indicated with a dashed line. The top row shows vehicles before occlusion and the bottom
row shows the same vehicles after occlusion.

Figure 6.8: Another example of a linked track by the proposed algorithm. The top row
shows the vehicle before occlusion and the bottom row shows the same vehicle after
occlusion.

113

The most common type of error in the solution to the sequence alignment problem is a

track paired with a track that is next to the correct one (either ahead by one, or earlier by one).

This can happen when the tracker does not track all vehicles entering or leaving an occlusion,

and there is an appearance ambiguity as to which vehicle is the correct match. For example,

when two dark colored cars are adjacent in a sequence, it is not clear how to choose the correct

one. This does not happen when the appearance of vehicles is sufficiently diverse. In fact,

the variation in appearance of vehicles acts like a synchronization mechanism -- it prevents the

error in one assignment from accumulating and throwing off the whole sequence.

6.4 Conclusions

Our primary contribution is a novel use of 3D scene structure to improve tracking performance

for objects moving through long occlusions, and it is especially suitable when motion predic-

tion fails and/or when the appearance of objects is only weakly discriminative. The key feature

of the proposed solution is the application of an ordering constraint, which stipulates that the

sequence of tracks becoming occluded is approximately the same as the sequence of tracks

becoming visible. A dynamic programming algorithm is used to solve the sequence align-

ment problem. The algorithm was evaluated on a vehicle tracking task in an aerial surveillance

video. The results show excellent performance in terms of decreasing track fragmentation and

outperform the Hungarian algorithm.

114

C H A P T E R 7
Activity Recognition

The ability to automatically or interactively infer meaningful activities and events from large

volumes of existing video data should be of considerable help to analysts. The goal of this

chapter is to provide an activity recognition framework for wide aerial video surveillance, which

is characterized by a very large field of view, large camera motion, strong parallax, a large

number of moving objects, and a small number of pixels on targets [70].

We start with geo-registered tracks inferred by a tracking module after stabilization. Activ-

ities are defined as tracks associated with properties of one or more objects. Since an activity

may involve a sequence of motion patterns (events) and multiple actors, how to represent

events and activities is a challenging task.

We propose to define and recognize a large number of activities with the ERM (Entity

Relationship Models) [14] framework, taking into account uncertainties associated with ob-

servations. The ERM is an appropriate framework to capture multiple relationships between

115

Figure 7.1: (A) We can identify a "source of tracks" by finding a set of tracklets that have
the same starting location in different time periods. (B) rendered closed-up view, using
Google Earth, shows that the location is a parking lot.

elements, which allows us to efficiently represent hierarchical structures, multiple actor activ-

ities, and context information. We use a RDBMS (Relational DataBase Management System),

such as Microsoft SQL [60], to store and retrieve all meta-data in our activity recognition sys-

tem, including tracking results, geospatial objects and context information, and use Structured

Query Language (SQL) [60] to define and recognize activities. In this approach, finding an

activity is equivalent to sending a set of SQL statements to the RDBMS. Also, RDBMS scales

well with respect to the number of distributed systems, for a large amount of data.

Many activities can only be inferred within the context of geospatial information and the

ERM framework is ideally suited to incorporate Geographic Information System (GIS) data.

We use open geospatial data from Open Street Map [16] to extract geospatial objects, such as

road networks, road types, and parking lots. To represent geospatial activities, we link visual

tracks and geospatial objects.

116

Our contributions can be summarized as follows:

• We propose to use the entity relationship model (ERM), a well-established methodol-

ogy in real world applications, to design and implement an activity recognition system

for wide aerial video surveillance where vehicular segmented tracks are the essential

components. By leveraging the powerful computational features of a RDBMS, which

is an implementation of ERM, finding an activity is equivalent to sending a query to the

RDBMS.

• We demonstrate that different types of activities, with hierarchical structure, multiple

actors, and (geo) context information, can be effectively and efficiently defined and

inferred using the ERM framework, taking into account uncertainties associated with

observations.

• We also show that visual tracks can be interpreted as activities using geo information.

By incorporating reference imagery and extensive using of GIS context, tracked objects

can be associated with physical meanings, and several high levels of reasoning, such as

traffic patterns or abnormal activity detection, can be performed.

The derived information is integrated into an existing visualization software forGIS (Google

Earth [27]), which provides the capability to analyze and infer higher levels of activities, as well

as serves as an interactive visualization system. Figure 7.1 shows an example of inferred re-

sults from real visual tracks. Experimental results on real tracks and GPS tracks validate our

approach.

117

Figure 7.2: Overview of the proposed approach.

7.1 Related Work

We now present an overview of methods to represent activities. A recent survey [87] de-

scribes actions, simple motion patterns usually performed by a single actor, represented by

non-parametric (e.g. template matching and dimensional reduction), volumetric (e.g space-

time filtering and tensors), and parametric (e.g. HMMs and linear dynamic systems) methods.

Activities, which are complex sequences of actions, are represented using graphical models

(e.g. Dynamic Bayesian Nets and Petri nets [21]), Syntactic (e.g. Context Free Grammars

and Attribute Grammars), and Knowledge Based (Constraint Satisfaction, Logic Rules, and

Ontologies) approaches.

Classical pattern classification formulations, employing a fixed dimensional input vector,

cannot handle complex activities which need to consider temporal relationships and context

information. HMM-based approaches are widely applied to speech recognition to recognize a

sequence of features. However, the assumption of Markovian dynamics and the time-invariant

nature of the model restrict the method to simple stationary temporal patterns [87].

118

Graphical models, including Bayesian networks (BN) andDynamic belief networks (DBN),

have been widely applied for higher level representation and reasoning since Bayesian networks

present conditional dependencies between random variables. Clearly, probabilistic inference

provides better decisions from uncertain input data. However, how to acquire reasonable

prior and conditional probabilities as prior domain knowledge is a critical issue for a dynamic

environment. Current methods rely on the closed world assumption, which restricts this ap-

proach to well-defined, closed domains. For a large scale, real world problem, defining and

learning the structure of the DBNs is very difficult because of the large number of variables

with complex dependencies, and the need for very large amounts of training data.

Image interpretation is considered to generate a comprehensive stochastic grammar that

can interpret an image by AND-OR graph that is equivalent representation to context-free

grammars [30]. Because deterministic grammars (e.g. FSA, CFG) cannot code low-level uncer-

tainties, Stochastic Context Free Grammars (SCFG) are presented for complex activities [38].

The limitation of SCFG is that complex temporal constraints, such as parallelism, overlap, and

synchrony, cannot be expressed. For example, the rule A → abB does not specify whether

the events can overlap or not, as mentioned in [18]. Damen proposes attribute grammars [19]

to constrain the spatial relationships in visual scenes although the method is able to handle a

single event.

Logic-based approaches rely on formal logic rules to describe activities related with com-

mon sense knowledge [59]. `Video Event Recognition Language' (VERL) is proposed based

119

on an ontology and first-order logic [25]. Fung [26] presented a combination of predicate logic

and probability for information fusion and decision support.

We now briefly review the literature on activity in wide area surveillance. Recently, Reilly

et al . [70] shows object detection and tracking in a wide area surveillance domain, where bi-

partite graph matching and linking tracks were applied to detection results, and grid cells were

employed to provide a set of local scene constraints such as road orientation and object con-

text for tracking. While many researchers have shown reliable tracking results, there are only

a few works on activity detection and recognition for wide area videos. Pollard et al . [65]

presented activity detection results using a complex probabilistic framework but only single

activity, convoys, was presented and geospatial constraints were not considered.

Given our domain, where vehicular segmented tracklets are the essential components,

we believe that activities can be effectively and efficiently inferred using a relational database

model, coupled with a probabilistic framework to handle uncertainty. This is described in the

next sections.

7.2 Approach

7.2.1 Problem Statement

The input to our system is a set of tracksO = {o1, o2, · · · , oN}, whereN is the total number

of tracks. Each track containsM tracked points o = (p1, p2, · · · , pM). In activity recognition,

multiple tracks can be associated with a single activity and a single track can contribute to

120

multiple activities. Hence, it is a many-to-many mapping from a set of input data to a set of

class symbols. The activity recognition suggested in this chapter is defined to automatically

find a subset of the input data (O), which matches an activity aj ,

(O, aj) → {o′1, o′2, · · · , o′N} (7.1)

where o′i is a subset of the track oi. Figure 7.2 shows an overview of our approach.

7.2.2 Estimating tracks

Recognizing meaningful activities from vehicle tracks requires that the estimated tracks be

useful -- long enough to capture interesting motion patterns. Any tracking algorithm that is

robust enough to provide such tracks can be used in our work. In our implementation, we use

a tracker that was introduced in Chapter 4.

7.2.3 Tracklets from the tracking module

A tracklet is the atomic spatio-temporal information, a segmented portion of a track, repre-

senting a vehicle's motion. Each tracklet has a collection of attributes xi = {λ1, λ2, · · · , λm},

where an element λi presents a physical property such as time, location, and speed. To deter-

mine these track segments, we note that, clearly, the most important points of the track are

those where the direction of travel changes. Between these points, the motion pattern is con-

stant and predictable. Therefore, our goal is to segment the track's trajectory into segments

which are accurately approximated by lines (linear model). Points on the trajectory between

121

these segments are where the direction of travel changes, often as a result of the vehicle mak-

ing a turn. Before segmentation, we filter out noise in the trajectories output from the tracker

by minimizing a robust cost function (Huber) over a sliding window of 5 locations.

We determine the trajectory segmentation optimally, using a classic dynamic programming

algorithm "segmented least squares" [7]. Given an ordered set of points p1, · · · , pj on the

trajectory, the algorithm minimizes the cost function,

f(j) = min
1≤i≤j

(ϵi,j +Θ+ f(i− 1)), (7.2)

where f(0) = 0, and ϵi,j is the least squares error of fitting a line through points pi, · · · , pj .

Before the optimization, the trajectories are resampled so that the distance between adjacent

sample points is constant (≈ 4 meters). The parameter Θ of this method is used to tune the

tradeoff between the number of segments produced and the resulting error. In our imple-

mentation we have fixed the value of this parameter to 1, which we have observed to generate

good segmentation results.

Tracklets are determined from the resulting segmentation by creating one tracklet for each

segment ("straight" tracklet), as well as one for the path between every two adjacent seg-

ments ("turn" tracklet). Furthermore, straight tracklets longer than 100 meters are broken

into shorter 50 meter segments. Now, for each tracklet, we compute a collection of attributes,

such as location, heading (applies to straight tracklets), heading change (applies to turn track-

lets), speed, acceleration, and accumulated distance traveled so far.

122

Entity
track point, tracklet, track, traffic rule,
road, building, area, · · ·

Relationship
tracklet -is on- road
road -has- traffic rule
must_stop -is a- traffic rule, · · ·

Event can be represented by a relationship
tracklet (track_id, · · · , speed=95)
tracklet (track_id, · · · , road_id)
road (road_id, · · · , speed_limit)
speeding: tracklet.speed > road.speed_limit

Table 7.1: ERM representation

7.2.4 Activity Representation Using ERM

We use ERM (Entity Relationship Models) to capture multiple relationships between elements.

Such a framework has been extensively used and validated for a long period of time in real

world applications [15, 14]. The basic entity-relationship modeling approach is based on de-

scribing data in terms of the three parts: entities, relationships between entities, and attributes

of entities or relationships. The relationships include "Belonging to", "Set and subset relation-

ships", "Parent-child relationships", and "Component parts of an object".

Hence, we represent track points {p}, tracklets {x}, and tracks {o} as entities and link

the three entities: {p} ⊂ {x} ⊂ {o}. The collection of physical properties of each tracklet is

represented as the attributes of the tracklet entity (a RDBMS table).

We also represent geospatial data (traffic rules, roads, buildings, and areas) the same way.

An entity "road" is a collection of road segments and each segment has a set of attributes such

as type, name, and speed-limit. Table 7.1 illustrates our ERM representation.

123

An activity aj is defined as a collection of tracklets obeying certain properties: aj = {x|x ∈

Ωj, Cj(x) > θj}, where Ωj , Cj(x) ∈ [0, 1], and θj represent the relationship associated with

the activity, the confidence function and the recognition threshold, respectively. The relation-

ship Ωj links between the attributes of entities, which include both the physical properties of

tracklets and the geospatial data.

Thus, "Speeding" can be seen as an activity defined by the relationship between two at-

tributes of tracklets (e.g. speed) and geospatial objects (e.g. speed-limit):

speeding := {x| r ∈ Groad, x.roadID = r.ID, x.s > r.s,

C(x.s, r.s) > θ}
(7.3)

where r, r.ID, x.roadID, x.s, r.s represent a road from GIS data (Groad), its ID, the road

ID of x, the speed of x, and the speed limit of r, respectively. C(x.s, r.s) describes the activity

confidence, which increases with the gap between x.s and r.s. The confidence measure is used

to ensure the reliability of composite activities as well as offering users a way to tune the system.

An ERM has desirable properties, described next:

• Hierarchical structure: a complex activity composed of many sub-actions can be rep-

resented by a "component parts of an object" relationship (Section. 7.2.5.2).

• Multiple actors: the mathematical foundation of ERM is set theory, so that an activity

involving multiple actors can be defined naturally (Section. 7.2.5.3).

124

• Context information: low level observations can be represented by uncertain numeri-

cal values while background knowledge often needs to be described by symbolic repre-

sentations. Observation and prior knowledge can easily be integrated (Section. 7.2.5.4).

7.2.5 Activity Inference

The ERM-based representation implies that inferring an activity is a search problem to find a

subset of tracklets from entire data set, which satisfies certain conditions. ERM is implemented

as a standard RDBMS and we can express set operations by SQL to find an activity from

our database. The activity recognition problem is then equivalent to sending queries to the

RDBMS.

A basic SQL statement has SELECT, FROM, andWHERE clauses: The SELECT com-

mand specifies the output attributes of entities, FROM defines the domain entities associated

with the activity, andWHERE describes the set of relationships to define the activity and also

its confidence. Activity definitions can easily be expressed by SQL statements.

There are some factors to classify activities in our domain: simple activities as simple

motion patterns, sequence of activities as composite activities, multiple actor activities, and

geospatial activities. In the following section we explain how to define different types of ac-

tivities using ERM and how to infer those activities using SQL commands.

125

7.2.5.1 Example I: Simple Activity

Activities associated with motion patterns, such as "U-turn", "Loop", and "3-point-turn", are

easily defined and inferred by the ERM framework and its corresponding SQL statements.

Definition. A "Loop" is defined as a segmented track where there exists two tracklets

{xi, xj} whose Euclidean distance ∥xi − xj∥ is smaller than the traveling distance: Loop =

{xi, xj|(1 − ∥xi−xj∥
xj .acc−xi.acc

) > θ, i < j, xi.ID = xj.ID}, where (xj.acc − xi.acc) represent

the traveling distance between xi and xj . The traveling distance is computed as the difference

of the accumulated distances between these two tracklets.

The above definition is represented by SQL as shown in Table 7.2, where RDBMS tables

T1, T2, and T3 come from the input tracklet table (e.g SELECT * INTO T1 FROM tracklet)

and dist(·, ·) is a user defined function to compute the Euclidean distance.

SELECT * FROM T1, T2
WHERE

T1.track_id = T2.track_id AND
(1 - (dist(T1, T2)/(T2.acc - T1.acc))) > θ

Table 7.2: SQL: "Loop"

Figure 7.3 shows a result of "Loop" recognition, where a track contains several loops. Its

corresponding SQL definition provides a set of tracklets associated with the activity.

7.2.5.2 Example II: Composite Activity

Suppose that we have three independent events identified as three entity sets: "Entry" (aEn),

"Stay" (aSt) and "Exit" (aEx). "Visit" is a composite activity that can be described as a

combination of these events.

126

Figure 7.3: An example of "loop"

Definition. We define "Visit" as the sequence of aEn, aSt, and aEx: visit = {xj|i =

j − 1, k = j + 1, xi ∈ aEn, xj ∈ aSt, xk ∈ aEx, C(xi)EnC(xj)StC(xk)Ex > θ}, with

xi, xj, xk, three tracklets from the same track. This definition can be represented by SQL

as shown in Table 7.3. Each identified event is a table, Activity(ID,Confidence), that

contains the IDs of tracklets and the confidence values. The confidence of "Visit" is defined

as CEn(xi)CSt(xj)CEx(xk).

127

SELECT * FROM T1, T2, T3, En, St, Ex
WHERE

T1.track_id = T2.track_id AND
T2.track_id = T3.track_id AND
T1.id + 1 = T2.id AND
T2.id + 1 = T3.id AND
T1.id = En.id AND
T2.id = St.id AND
T3.id = Ex.id AND
(En.conf * St.conf * Ex.conf) > θ

Table 7.3: SQL: "Visit"

7.2.5.3 Example III: Multiple Actors Activity

Activities associated with multiple actors, such as "Source", "Sink", "Convoy", and "Following",

can also be defined and inferred by ERM and SQL statements. We identify a source of tracks

by finding a set of tracks that have the same starting location in different time periods.

Definition. Let us first define "2-Source" as a temporary set of 2 tracklets which exit

from the same location: 2src = {(xi, xj)|xi.trackID ̸= xj.trackID, xi ∈ aEx, xj ∈

aEx, ∥xi−xj∥ < ω}, where ω is a threshold. It provides a set of tracklet pairs which appear as

many times as they are involved in a 2-tuple source. Extracting N-tuple source needs to count

the number of occurrence for each tracklet: source = {xi|Si = {(xi, ·) ∈ 2src}, |Si| > θ},

where |Si| is the cardinality of each subset Si which contains the same tracklets in the pairs

of the 2src set. Table 7.4 shows the corresponding SQL statements, where "Exit" action is

represented as a table, Ex(id, confidence), that contains the IDs of tracklets and its confidence

values.

Figure 7.1 shows a result of "SOURCE" recognition, where the location of results corre-

sponds a parking lot.

128

SELECT T1.id as id INTO tmp FROM T1, T2, Ex
WHERE

T1.track_id ̸= T2.track_id AND
T1.id = Ex.id AND
T2.id = Ex.id AND
dist(T1, T2) > θ;

SELECT id, count(id) as confidence FROM tmp
GROUP BY id

Table 7.4: SQL: "Source"

7.2.5.4 Example IV: Geospatial Activities

The ERM framework is ideally suited to incorporate GIS information, as for "Speeding" (Sec-

tion 7.2.4). Many activities can only be inferred within the context of geospatial information.

We can find "all tracklets on a specific road" by looking at the correspondences between the

locations of tracklets and the locations of known road segments.

Definition. "On-road-X" is a set of tracklets which are on the same road: on_road_X =

{x|x.roadID = r.ID, r.name = "X", 1/∥x − r∥ > θ ∀r ∈ Groad}, where r and r.name

designate a road segment and its name, and ∥x− r∥ the Euclidian distance between the road

segment and the tracklet. This definition is represented by SQL as shown in Table 7.5, where

T1 and Road are the tracklet and road segment tables, respectively. Here, we compute the

location of each tracklet in advance, and store the id of road segment into the tracklet table.

The optional condition (1/dist(T1, Road) > θ) provides a confidence measure.

SELECT * FROM T1, Road
WHERE

T1.id = Road.id AND
Road.name = "X" AND
1/dist(T1, Road) > θ

Table 7.5: SQL: "On-road-X"

129

Figure 7.4: Orthographic view of "on road W Lane Ave". Geospatial data allows us to
extract vehicles driving on a known road.

Figure 7.4 shows a result of "On-road-X" activity. Note that most spatial activities can

also be enriched by having a geospatial attribute. For instance, a "convoy" becomes a "convoy

traveling on highway X" when the spatial tracks are associated with geospatial information.

130

7.3 Results

We have implemented our framework using a standard RDBMS (MS-SQL [60]), and validated

the approach on real visual tracks and GPS datasets. We define 7 activities for evaluation

(including "Loop"):

• a three point turn ("3PT") consists of two neighbor turns

{xi, xj|((xi.ϕ/π)(xj.ϕ/π))/(∥xi − xj∥) > θ}

• a two point turn ("2PT") has an acute angle {x|x.ϕ > θ}

• "Stay" is defined by the ratio between the time and travel distance between two points

{xi|(∥(xj.time− xi.time)∥)/(∥xj.acc− xj.acc∥) > θ}

• "U-turn" has an acute angle turn between two tracklets which are located in the same

road {xj|(∥xj.ϕ < π/4, ∥xi − xk∥ < ω1, (xk.acc− xi.acc) > ω2};

• "Entry" and "Exit" is defined with a stop, turns, speed changes and the travel distance.

"Entry" is defined as {xk|xk.end = True, xk.s < xi.s, xj.ϕ > ω1, xk.acc > ω2}.

{xi, xj, xk}, x.ϕ, and ωi represent different tracklets from the same track, such as i < j < k,

the turn angle attribute, and internal thresholds associated with the definition, respectively.

7.3.1 Real (CLIF) dataset

Data. The dataset is a set of tracking results extracted from the CLIF 2006 dataset [50]. This

dataset contains wide area motion imagery captured from an airborne sensor. The sensor is

131

Figure 7.5: An example of extracted tracklets from the CLIF 2006 dataset [50]

composed of a matrix of 6 cameras, where the size of each image tile is 4008x2672. The video

is captured at roughly 2 Hz, and it is in grayscale. The sequence is an example of persistent

surveillance imagery, where the airplane makes several circular flyovers around the campus of

Ohio State University. The footprint of the area where we computed tracks is about 1 km2,

and its duration is about 8 minutes. Each track is on average 1 minute long. The total number

of tracks estimated in the sequence of interest is more than 8000.

The main challenge is the sheer number of objects, or points of interest, one must consider

to determine whether an activity is happening. Furthermore, an activity is not a static concept

132

Out Actual Loop 2PT 3PT Entry Exit None
Loop 2 0 0 2 0 0
2PT 0 2 1 1 1 0
3PT 0 0 2 0 0 0
Entry 1 0 0 7 1 0
Exit 0 0 0 1 6 0
None 0 0 0 0 1 -

Table 7.6: Confusion Matrix (Real Data Set)

that one can identify at a glance. Instead, one must verify that a whole sequence of actions is

happening to label something a particular activity.

Method. Our input is a set of tracks extracted by the tracking module described in Sec-

tion. 7.2.3. Figure 7.5 shows a set of extracted tracklets. To build a set of ground truth data,

from a set of automatically extracted tracks, we manually selected individual tracks that include

pre-defined activities and assign labels for each data.

In our dataset, we used 2 loops, two 2 point turns, three 3 point turns, 8 entry and 7

exits. We inserted all selected tracks into a single table in our RDBMS and infer activities using

pre-defined SQL statements.

Some tracks have more than one activity (e.g. a loop and a 3 point turn) but the locations

associated with specific activities can be different. To evaluate the result of an activity, we

extracted all tracklets, compared to the activity definition, from entire dataset, visualize the

result using a GIS system (Google Earth), and then, verify manually whether the extracted

tracklets represent the actual activity or not.

Results. Table 7.6 shows the confusion matrix among 5 activities, where "None" is a

NULL activity to count missing and false alarms. Result shows that we can identify all simple

133

Out Actual Loop 3PT U-turn Stay None
Loop 17 0 0 0 0
3PT 0 7 0 0 0
U-turn 0 0 13 0 1
Stay 0 0 0 3 0
None 0 2 2 0 -

Table 7.7: Confusion Matrix (GPS Data Set)

Figure 7.6: An example of GPS tracks: (Left) A GPS track (yellow color) and a set of iden-
tified "Loops" (red color). (Right) One of the results shows a big closed circle and a small
closed trajectory.

activities, such as "2 point turn", "3 point turn","Entry", "Exit", and "loop", which can easily

seen in real data set.

In addition, we identified a number of geospatial activities, such as "on road X", "speed-

ing", and "approaching X", as well as some complex activities including multiple actors, such

as "source around X" and "sink around X". The extracted activities and geospatial objects can

be visualized using an open GIS (e.g. Google Earth), where we can identify both activities and

associated geospatial objects. Figure 7.4 in Section. 7.2.5.4 shows one of identified geospatial

activities in the real dataset.

134

7.3.2 GPS trajectory dataset

Data. Manually labeling vehicle activity to extract a consistent ground truth from video tracks

is a laborious work. Thus we also evaluated our activity recognition prototype on labeled data

fromGPS acquisition. Compared to the results wemanually labeled from our trackingmodule,

GPS tracks do not differ a lot. First the localization is mostly the same in both systems, with a

5 meters accuracy for the video geo-registration against 1 to 10 meters at 95% for our standard

GPS. Second, the GPS acquisition frequency (1Hz) is only half our video framerate (2Hz).

The data acquisition consisted of daily trips between 10 and 40 minutes long. GPS filters

were deactivated, so only raw data have been recorded. Finally, we manually identified every

activity we planned to evaluate.

Method. We use the same tracking module to extract tracklets from the GPS dataset.

To build a set of ground truth data, from a set of automatically extracted tracks, we manually

selected individual tracks that include pre-defined activities and assign labels for each data.

The dataset includes 17 loops, 7 three point turns, and 13 u-turns. Since GPS tracks

are much longer than the real tracks and each tracks include many activities, we inserted a

single track into a single table in our RDBMS and inferred activities using pre-defined SQL

statements.

To evaluate the result of an activity, we extracted a set of tracklets, corresponding to the

activity definition, from a single track, visualize the result using a GIS (Google Earth), and

then, verify manually both missing and false alarms.

135

Results. Table 7.7 shows the confusion matrix among 4 activities. Result shows that we

can identify all simple activities, such as "Loop", "3 point turn", U-turn", and "Stay", which

can easily seen in real data set. Fig. 7.6 shows a set of identified activities ("Loop") in a single

GPS track.

7.4 Conclusion

Our results show that we can identify simple activities, such as "U-turn", "2 point turn", "3

point turn","Entry-Exit", "loop", and "speeding", as well as some complex activities including

multiple actors, such as "source" and "sink". Extracted activities are visualized using an open

GIS (e.g. Google Earth), where we can identify associated geospatial objects.

One limitation of this work is that all activities need to be hard-coded in advance by an

operator. The automatic generation of activity descriptions from one or more observed in-

stances, "query by example", will be an important future work, which might be equivalent to

discover of hidden relationships between data entities.

Our system provides wide applications such as traffic monitoring, security, disaster control,

public safety and law enforcement operations.

136

References

[1] S. Ali, V. Reilly, and M. Shah. Motion and appearance contexts for tracking and re-
acquiring targets in aerial videos. In IEEE CVPR, pages 1--6, 2007.

[2] M. Andriluka, S. Roth, and B. Schiele. People-tracking-by-detection and people-
detection-by-tracking. In IEEE CVPR, pages 1--8, 2008.

[3] A. Andriyenko and K. Schindler. Globally optimal multi-target tracking on a hexagonal
lattice. In ECCV, volume 6311 of LNCS, pages 466--479. 2010.

[4] S. Avidan. Ensemble tracking. IEEE PAMI, 29(2):261--271, 2007.

[5] B. Babenko, M.-H. Yang, and S. Belongie. Visual tracking with online multiple instance
learning. In IEEE CVPR, pages 983--990, 2009.

[6] S. Baker, R. Gross, I. Matthews, and T. Ishikawa. Lucas-kanade 20 years on: A unifying
framework: Part 2. Technical Report CMU-RI-TR-03-01, Robotics Institute, 2003.

[7] R. Bellman. On the approximation of curves by line segments using dynamic program-
ming. Commun. ACM, 4(6):284, 1961.

[8] J. Berclaz, F. Fleuret, E. Turetken, and P. Fua. Multiple object tracking using k-shortest
paths optimization. IEEE PAMI, 33(9):1806--1819, 2011.

[9] J. Bergen, P. Anandan, K. Hanna, and R. Hingorani. Hierarchical model-based motion
estimation. In ECCV, volume 588 of LNCS, pages 237--252. Springer, 1992.

[10] A.F. Bobick and A.D. Wilson. A state-based approach to the representation and recog-
nition of gesture. IEEE PAMI, 19(12):1325--1337, 1997.

[11] M. Brown and D.G. Lowe. Recognising panoramas. In ICCV, volume 2, pages 1218--
1225, 2003.

[12] P. J. Burt and E. H. Adelson. A multiresolution spline with application to image mosaics.
ACM Trans. Graph., 2:217--236, 1983.

[13] A. A. Butt and R. T. Collins. Multiple target tracking using frame triplets. In ACCV
2012, volume 7726 of LNCS, pages 163--176. 2013.

137

[14] P. P. Chen. The entity-relationship model - toward a unified view of data. ACM Trans.
Database Syst., 1(1):9--36, 1976.

[15] E. F. Codd. A relational model of data for large shared data banks. Commun. ACM,
13(6):377--387, 1970.

[16] OpenStreetMap Contributors. Openstreetmap. http://www.openstreetmap.org.

[17] I.J. Cox and S.L. Hingorani. An efficient implementation of reid's multiple hypothesis
tracking algorithm and its evaluation for the purpose of visual tracking. IEEE PAMI,
18(2):138--150, 1996.

[18] D. Damen. Activity analysis: Finding explanations for sets of events. PhD Thesis. Univer-
sity of Leeds, 2009.

[19] D. Damen and D. Hogg. Recognizing linked events: Searching the space of feasible
explanations. In IEEE CVPR, pages 927--934, 2009.

[20] T.J. Darrell, I.A. Essa, and A.P. Pentland. Task-specific gesture analysis in real-time using
interpolated views. IEEE PAMI, 18(12):1236--1242, 1996.

[21] R. David and H. Alla. Petri nets for modeling of dynamic systems: A survey. Automatica,
30(2):175--202, 1994.

[22] T. B. Dinh, N. Vo, andG.Medioni. Context tracker: Exploring supporters and distracters
in unconstrained environments. In IEEE CVPR, pages 1177--1184, 2011.

[23] G. Doretto and Y. Yao. Region moments: Fast invariant descriptors for detecting small
image structures. In IEEE CVPR, pages 3019--3026, 2010.

[24] M. A. Fischler and R. C. Bolles. Random sample consensus: a paradigm for model
fitting with applications to image analysis and automated cartography. Communications of
the ACM, 24(6):381--395, 1981.

[25] A. R. J. François, R. Nevatia, J. R. Hobbs, and R. C. Bolles. Verl: An ontology framework
for representing and annotating video events. IEEE MultiMedia, 12(4):76--86, 2005.

[26] F. Fung, K. Laskey, M. Pool, and M. Takikawa. Plasma: combining predicate logic
and probability for information fusion and decision support. paper presented at the aaai
spring symposium, 2005.

[27] Google. Google Earth. http://www.google.com/earth/index.html.

[28] H. Grabner, J. Matas, L. Van Gool, and P. Cattin. Tracking the invisible: Learning where
the object might be. In IEEE CVPR, pages 1285--1292, 2010.

138

[29] D. Greig, B. Porteous, and A. Seheult. Exact maximum a posteriori estimation for binary
images. Journal of the Royal Statistical Society, 51(2):271--279, 1989.

[30] R. Hamid, S. Maddi, A. Bobick, and M. Essa. Structure from statistics - unsupervised
activity analysis using suffix trees. In IEEE ICCV, pages 1--8, 2007.

[31] C. Harris andM. Stephens. A combined corner and edge detector. InAlvey vision conference,
volume 15, page 50. Manchester, UK, 1988.

[32] R. Hartley and A. Zisserman. Multiple View Geometry in Computer Vision. Cambridge
University Press, 2nd edition, 2003.

[33] T. Hastie, R. Tibshirani, and J. Friedman. The Elements of Statistical Learning. Springer,
2001.

[34] C. Huang, B. Wu, and R. Nevatia. Robust object tracking by hierarchical association of
detection responses. In ECCV, pages 788--801, 2008.

[35] T. Igarashi, T. Moscovich, and J. F. Hughes. As-rigid-as-possible shape manipulation.
ACM Trans. Graph., 24:1134--1141, July 2005.

[36] M. Irani, P. Anandan, and S. Hsu. Mosaic based representations of video sequences and
their applications. In ICCV, pages 605--611, 1995.

[37] M. Irani, S. Hsu, and P. Anandan. Video compression using mosaic representations.
Signal Processing: Image Communication, 7(4-6):529--552, 1995. Coding Techniques for Very
Low Bit-Rate Video.

[38] Y. A. Ivanov and A. F. Bobick. Recognition of visual activities and interactions by stochas-
tic parsing. IEEE PAMI, 22(8):852--872, 2000.

[39] H. Izadinia, V. Ramakrishna, K.M. Kitani, andD. Huber. Multi-pose multi-target tracking
for activity understanding. In IEEE WACV, pages 385--390, 2013.

[40] S. Lao J. Xing, Haizhou A. Multi-object tracking through occlusions by local tracklets
filtering and global tracklets association with detection responses. In IEEECVPR, pages
1200--1207, 2009.

[41] H. Jiang, S. Fels, and J.J. Little. A linear programming approach for multiple object track-
ing. In IEEE CVPR, pages 1--8, 2007.

[42] Z. Kalal, J. Matas, and K. Mikolajczyk. P-n learning: Bootstrapping binary classifiers by
structural constraints. In IEEE CVPR, pages 49--56, 2010.

[43] E.-Y. Kang, I. Cohen, and G. Medioni. A graph-based global registration for 2d mosaics.
In ICPR, volume 1, pages 257--260, 2000.

139

[44] R. Kaucic, A.G. Amitha Perera, G. Brooksby, J. Kaufhold, and A. Hoogs. A unified
framework for tracking through occlusions and across sensor gaps. In IEEE CVPR,
volume 1, pages 990--997, 2005.

[45] M. Keck, L. Galup, and C. Stauffer. Real-time tracking of low-resolution vehicles for
wide-area persistent surveillance. In IEEE WACV, pages 441--448, 2013.

[46] Z. Khan, T. Balch, and F. Dellaert. Multitarget tracking with split and merged measure-
ments. In IEEE CVPR, volume 1, pages 605--610, 2005.

[47] S. J. Kim and M. Pollefeys. Radiometric alignment of image sequences. In IEEE CVPR,
volume 1, pages 645--651, 2004.

[48] J. Kleinberg and E. Tardos. Algorithm Design. Pearson, 2006.

[49] F.R. Kschischang, B.J. Frey, and H.-A. Loeliger. Factor graphs and the sum-product
algorithm. Information Theory, IEEE Transactions on, 47(2):498--519, 2001.

[50] Air Force Research Lab. CLIF 2006. https://www.sdms.afrl.af.mil/index.
php?collection=clif2006.

[51] Air Force Research Lab. WPAFB-21Oct2009. https://www.sdms.afrl.af.mil/.

[52] A. Levin, A. Zomet, S. Peleg, and Y. Weiss. Seamless image stitching in the gradient
domain. In ECCV, volume 3024 of LNCS, pages 377--389. Springer, 2004.

[53] P. Liang, G. Teodoro, H. Ling, E. Blasch, G. Chen, and L. Bai. Multiple kernel learning
for vehicle detection in wide area motion imagery. In International Conference on Information
Fusion (FUSION), pages 1629--1636, 2012.

[54] W.-Y. Lin, S. Liu, Y. Matsushita, T.-T. Ng, and L.-F. Cheong. Smoothly varying affine
stitching. In IEEE CVPR, pages 345--352, 2011.

[55] F. Liu, M. Gleicher, H. Jin, and A. Agarwala. Content-preserving warps for 3d video
stabilization. ACM Trans. Graph., 28:44:1--44:9, July 2009.

[56] M.I.A. Lourakis. levmar: Levenberg-marquardt nonlinear least squares algorithms in
C/C++. http://www.ics.forth.gr/~lourakis/levmar/, 2009.

[57] D. G. Lowe. Distinctive image features from scale-invariant keypoints. IJCV, 60(2):91--
110, 2004.

[58] S. Mann and R.W. Picard. Virtual bellows: constructing high quality stills from video. In
IEEE ICIP, volume 1, pages 363--367, 1994.

[59] G. Medioni, I. Cohen, F. Bremond, S. Hongeng, and R. Nevatia. Event detection and
analysis from video streams. IEEE PAMI, 23(8):873--889, 2001.

140

[60] Microsoft. Microsoft sql server. http://www.microsoft.com/sqlserver/.

[61] P. J. Moreno, P. P. Ho, and N. Vasconcelos. A kullback-leibler divergence based kernel for
svm classification in multimedia applications. In Advances in Neural Information Processing
Systems 16. MIT Press, 2004.

[62] K. Okuma, A. Taleghani, N. de Freitas, J. Little, and D. Lowe. A boosted particle filter:
Multitarget detection and tracking. In ECCV, volume 3021 of LNCS, pages 28--39,
2004.

[63] A.G.A. Perera, C. Srinivas, A. Hoogs, G. Brooksby, and W. Hu. Multi-object tracking
through simultaneous long occlusions and split-merge conditions. In IEEE CVPR, vol-
ume 1, pages 666--673, 2006.

[64] H. Pirsiavash, D. Ramanan, and C.C. Fowlkes. Globally-optimal greedy algorithms for
tracking a variable number of objects. In IEEE CVPR, pages 1201--1208, 2011.

[65] E. Pollard, B. Pannetier, and M. Rombaut. Convoy detection processing by using the
hybrid algorithm (gmcphd/vs-immc-mht) and dynamic bayesian networks. In Information
Fusion, 2009. FUSION '09. 12th International Conference on, pages 907--914, 2009.

[66] A. B. Poore. Multidimensional assignment formulation of data association problems aris-
ing from multitarget and multisensor tracking. Computational Optimization and Applications,
3:27--57, 1994.

[67] J. Prokaj, M. Duchaineau, and G. Medioni. Inferring tracklets for multi-object tracking.
In IEEE CVPRW (WAVP), pages 37--44, 2011.

[68] J. Prokaj and G. Medioni. Accurate efficient mosaicking for wide area aerial surveillance.
In IEEE WACV, pages 273--280, 2012.

[69] D. Reid. An algorithm for tracking multiple targets. Automatic Control, IEEE Transactions
on, 24(6):843--854, Dec 1979.

[70] V. Reilly, H. Idrees, and M. Shah. Detection and tracking of large number of targets
in wide area surveillance. In ECCV, volume 6313 of LNCS, pages 186--199. Springer,
2010.

[71] R. L. Rothrock andO. E. Drummond. Performancemetrics for multiple-sensormultiple-
target tracking. In Proceedings of SPIE, volume 4048, pages 521--531, 2000.

[72] H. Sakoe and S. Chiba. Dynamic programming algorithm optimization for spoken word
recognition. IEEETransactions on Acoustics, Speech and Signal Processing, 26(1):43--49, Febru-
ary 1978.

[73] D. Salvi, J. Waggoner, A. Temlyakov, and S. Wang. A graph-based algorithm for multi-
target tracking with occlusion. In IEEE WACV, pages 489--496, 2013.

141

[74] H. Sawhney, S. Hsu, and R. Kumar. Robust video mosaicing through topology infer-
ence and local to global alignment. In ECCV, volume 1407 of LNCS, pages 103--119.
Springer, 1998.

[75] H.S. Sawhney and R. Kumar. Truemulti-image alignment and its application tomosaicing
and lens distortion correction. IEEE PAMI, 21(3):235--243, 1999.

[76] D. Scharstein and R. Szeliski. A taxonomy and evaluation of dense two-frame stereo
correspondence algorithms. International Journal of Computer Vision, 47:7--42, 2002.

[77] G. Schweighofer and A. Pinz. Robust pose estimation from a planar target. IEEE PAMI,
28(12):2024--2030, 2006.

[78] X. Shi, H. Ling, E. Blasch, and W. Hu. Context-driven moving vehicle detection in wide
area motion imagery. In ICPR, pages 2512--2515, 2012.

[79] H.-Y. Shum and R. Szeliski. Systems and experiment paper: Construction of panoramic
image mosaics with global and local alignment. International Journal of Computer Vision,
36:101--130, 2000.

[80] S. N. Sinha and M. Pollefeys. Pan-tilt-zoom camera calibration and high-resolution mo-
saic generation. Computer Vision and Image Understanding, 103(3):170--183, 2006. Special
issue on Omnidirectional Vision and Camera Networks.

[81] D. Sontag, T. Meltzer, A. Globerson, T. Jaakkola, and Y. Weiss. Tightening lp relaxations
for map using message passing. 2008.

[82] C. Stauffer. Estimating tracking sources and sinks. In IEEECVPRW, volume 4, page 35,
2003.

[83] U.S. Geological Survey. USGS EarthExplorer. http://edcsns17.cr.usgs.gov/
NewEarthExplorer/.

[84] R. Szeliski. Image mosaicing for tele-reality applications. In IEEEWACV, pages 44--53,
dec 1994.

[85] R. Szeliski. Image alignment and stitching: A tutorial. Technical Report MSR-TR-2004-
92, Microsoft Research, 2006.

[86] E. Tola, V. Lepetit, and P. Fua. Daisy: An efficient dense descriptor applied to wide-
baseline stereo. IEEE PAMI, 32(5):815--830, 2010.

[87] P. Turaga, R. Chellappa, V.S. Subrahmanian, and O. Udrea. Machine recognition of hu-
man activities: A survey. Circuits and Systems for Video Technology, IEEE Transactions on,
18(11):1473--1488, 2008.

142

[88] O. Williams, A. Blake, and R. Cipolla. A sparse probabilistic learning algorithm for real-
time tracking. In IEEE ICCV, volume 1, pages 353--360, 2003.

[89] J. Xiao, H. Cheng, F. Han, and H. Sawhney. Geo-spatial aerial video processing for scene
understanding and object tracking. In IEEE CVPR, pages 1--8, 2008.

[90] J. Xiao, H. Cheng, H. Sawhney, and F. Han. Vehicle detection and tracking in wide field-
of-view aerial video. In IEEE CVPR, pages 679--684, 2010.

[91] M. Yang, Y. Wu, and G. Hua. Context-aware visual tracking. IEEE PAMI, 31(7):1195--
1209, 2009.

[92] Q. Yu and G. Medioni. Multiple-target tracking by spatiotemporal monte carlo markov
chain data association. IEEE PAMI, 31(12):2196--2210, 2009.

[93] L. Zhang, Y. Li, and R. Nevatia. Global data association for multi-object tracking using
network flows. In IEEE CVPR, pages 1--8, 2008.

143

