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Abstract

We present a method for recognizing a vehicle’s make
and model in a video clip taken from an arbitrary viewpoint.
This is an improvement over existing methods which require
a front view. In addition, we present a Bayesian approach
for establishing accurate correspondences in multiple view
geometry.

We take a model-based, top-down approach to classify
vehicles. First, the vehicle pose is estimated in every frame
by calculating its 3-D motion on a plane using a structure
from motion algorithm. Then, exemplars from a database
of 3-D models are rotated to the same pose as the vehicle in
the video, and projected to the image. Features in the model
images and the vehicle image are matched, and a model
matching score is computed. The model with the best score
is identified as the model of the vehicle in the video.

Results on real video sequences are presented.

1. Introduction

The number of surveillance systems around us has in-
creased in recent years and is likely to continue growing.
Thanks to advances in hardware and lower manufacturing
costs, video cameras in these systems now have very high
resolution (1080i is commonly supported by cameras on
store shelves). This combination of more video sources and
higher resolutions produces a staggering amount of data,
which must be then reviewed in some way. However, the
amount of data precludes a thorough search for objects of
interest by a human operator. Instead, content-based re-
trieval algorithms need to be used to solve this problem.
The question then becomes what can be inferred from the
raw video data.

In this work, our interest is in surveillance systems where
the objects of interest are vehicles. Figure 1 illustrates the
surveillance scenario considered in this paper. The most
common information gathered about vehicles from video is

Figure 1. The surveillance scenario considered here.

their position over time. There may be some additional in-
formation such as the vehicle’s appearance, and broad cat-
egory (sedan, van, truck), but little beyond that. A highly
desirable information that is currently not inferred is the ve-
hicle’s make and model.

Knowing the make and model of a vehicle is desirable,
because, among other things, it allows queries to a retrieval
system such as “When was the last time a Ford Focus trav-
eled through this location?”. The difficulties in achieving
this goal include varying appearance (due to body color and
reflections), the varying pose of a vehicle, and the relatively
fine (small-scale) features distinguishing different vehicle
models from each other.

The main contribution of this paper is a new algorithm
that solves exactly this problem: inferring the vehicle’s
make and model in video clip taken from an arbitrary view-
point. The key idea is to determine the vehicle’s pose, and
match the projection of a 3-D model to the vehicle in the
video.

Until recently, vehicle type recognition was limited to
identifying one of a small set of generic categories, such as a
sedan, or a truck [4, 3,9, 5]. This limitation was removed by
Petrovic and Cootes in [15], where the specific vehicle make
and model was identified. In that work, a particular region
of the car (the front) is used for recognition. This region
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is normalized to a fixed size, and various features capturing
the image structure are calculated from it and form a fea-
ture vector. Nearest neighbor classification is used to finally
identify the specific vehicle type. Of the features tested, the
best performance (over 97% vehicles correctly identified)
was achieved using Square Mapped gradients. In the same
vein, Negri et al [14] used slightly different features, also
based on gradients, and a different, voting-based, classifier,
and achieved similar performance.

The weakness of these methods is their reliance on a spe-
cific viewpoint, the vehicle’s front-view. In addition, these
methods work on single images, and do not take advantage
of multiple frame data available in a video surveillance con-
text. In this work, we remove these restrictions, and show
that vehicle make and model can be identified from a video
from an arbitrary viewpoint, and with a great accuracy.

We take a model-based, top-down approach. First, the
vehicle pose is estimated in every frame by calculating its
3-D motion using a structure from motion algorithm and
assuming the vehicle is moving forward and on a plane.
Then, each model in the database of 3-D models is rotated
to the same pose, and projected to the image. Features in
the model images and the vehicle image are matched, and a
model similarity score is computed. The model with the
best score is reported as the model of the vehicle in the
video.

To establish correspondences for the structure from mo-
tion algorithm, we take inspiration from [20, 2] and use a
global motion pattern as a prior in calculating sparse opti-
cal flow. This increases the tolerance of correspondences to
noise from reflections on the car and to ambiguities arising
from the aperture problem.

The reconstruction problem in our case is made easier
by realizing the motion of the vehicle is planar. There are
several approaches [17, 7, 11] to solving the structure from
motion problem with this useful constraint. In [17], Rother
shows that knowledge of four coplanar points simplifies the
problem to a linear system of equations. A plane+parallax
formulation of the problem in [7] yields dense reconstruc-
tion using direct image measurements without the need for
image correspondences. A factorization approach to solve
this problem is presented in [11]. Here, we solve this prob-
lem by assuming a calibrated camera and a knowledge of
the ground plane, and using an incremental reconstruction
algorithm. The camera is assumed to be static (or stabi-
lized). The additional knowledge is used to constrain opti-
mization of the reprojection error.

2. Correspondences

Accurate correspondences are critical to the success of
algorithms taking advantage of multiple view geometry.
Since we are dealing with video data, we would like to use
an optical flow based algorithm to get a sparse set of cor-

respondences between adjacent frames of the video. The
problem is that in our setting, the correspondences are on
the car body, which has a strong specular component. This
causes changes in appearance from frame to frame. In addi-
tion, we need to deal with ambiguities caused by the aper-
ture problem. To handle all these problems, we formulate
the optical flow problem in a Bayesian setting, and use the
global motion pattern as a prior. The effect of this prior is
to guide the search for correspondences. This idea has been
successfully used in tracking vehicles in airborne video and
tracking in high density crowd scenes [20, 2].

This global motion pattern is calculated by tracking the
vehicle in the video. Here we use a simple tracker based
on the Hungarian algorithm [8]. We first subtract the back-
ground to find vehicles in every frame (assuming the only
large moving objects in the scene are vehicles). The back-
ground is modeled as the mode of a sliding window of
frames. Then, vehicles are associated from frame to frame
using the Hungarian algorithm, where the similarity be-
tween two vehicles in different frames is based on how
much they overlap. The frame rate is high enough, such
that the motion smoothness assumption is satisfied. The
final trajectory of a vehicle is then used as a prior in the
following optical flow computation.

The optical flow is calculated for a sparse set of stable
features, which are computed using the Harris corner de-
tector. For each feature ¢, the probability of flow v; in the
frame I; is

p(vill;) ~ p(L;[vi)p(vi) )]
where p(I;|v;) denotes the image likelihood and p(v;) is
the flow prior. The flow is then the maximum a posteriori
(MAP) estimate,

v; = argmax p(v|I;) )

If the probability of v is less than a threshold, this feature
point is removed.

Here, v; is a discrete variable, whose possible values are
determined by a small circular region centered on the pre-
dicted location of the feature point in the current frame. The
radius of the region is 1.5||¥||, where ¥ is the global motion
in the current frame computed from the vehicle trajectory.
If the position of the vehicle’s center in the current frame is
c;, and in the previous frame is c;_1,

vV = Cj —Cj—1 (3)

The prediction location of the feature point, x;, is simply
the previous position, x;_; plus V.

The flow prior regularizes both the flow direction and
magnitude:

p(vz) = DPdirection (Vi)pmagnitude (Vi) (4)
DPdirection (Vz) = k 05({’, . % =+ 1) (5)
Pmagnitude (Vz) = k 6_(Hvi =191/ (6)
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where k denotes a normalization constant so that the proba-
bility of all possible flows sums to 1, and o is set to a fixed
value, or a fraction of || V||, such that the allowable range
of flow magnitude has non-zero probability. The prior ex-
presses that the flow should be similar in magnitude and
direction to the global motion of the vehicle.

The flexibility of a Bayesian formulation allows one to
model the likelihood in many different ways. Here, the
likelihood is computed using normalized cross-correlation
at multiple scales:

) = H ksNCC(Ij71(Xi71 + Vi)yIj(fi)ws) @)

seS

p(L;]vi

where S denotes a small set of square sized windows, and
k is again a normalization constant. Cross-correlation is
chosen for its invariance to lighting changes.

In the current formulation, v} is integer valued. Since
we need accurate correspondences for geometry calcula-
tions, subpixel accuracy is desired. To accomplish this, a
quadratic is fit to p(v|I) in the immediate neighborhood of
the optimum v .

If the vehicle trajectory is noisy, it can adversely impact
the flow estimate through the influence of the prior. This
problem is handled by simultaneously estimating Vv in an
EM-like fashion over a small number of iterations. First,
(2) is solved using the current estimate of V. Then V is

computed as
_ 1

This effectively removes any noise in V in as few as 3 itera-
tions.

If the likelihood only considers translating motion, as in
our case by using cross-correlation, some accuracy is lost.
This can be rectified by realizing that the motion of the cor-
respondences is planar. So to further refine the estimates a
homography is estimated between the frames, and the pro-
cess just described repeated, only this time with one of the
frames warped in the cross-correlation (likelihood) compu-
tation.

The complexity of this approach is dominated by the
likelihood computation. The likelihood needs to be deter-
mined for every possible value of flow, which can be a rel-
atively large set of values to consider. In our implementa-
tion, we used normalized cross-correlation at three different
scales to compute the likelihood, which is inefficient, but
more practical schemes can be easily substituted.

3. Structure from Motion

The needed pose of the vehicle is determined by calcu-
lating its 3-D motion on a plane and assuming the vehicle is
moving forward. In our current implementation the camera

is assumed to be static, but a moving camera can be incorpo-
rated by stabilizing the video first. Since we are interested
in the pose of the moving vehicle, only correspondences on
the vehicle are used. These are determined from the back-
ground subtraction. A standard pinhole camera model is
assumed, and the camera is calibrated off-line, which is rea-
sonable in a surveillance context.

Determining the motion of the vehicle with a static cam-
era is equivalent to assuming the vehicle is static and deter-
mining the motion of a virtual camera. We now show that
the motion of a virtual camera is inverse of the motion of the
vehicle. Since a vehicle is a rigid body, its motion is com-
pletely described by a 3-D rotation, R,,, and a translation,

tim:
R, t
M| g ] ©
Let ; = PgaicM X be the projection of an arbitrary

point X on the moving vehicle with a static camera Pygp¢ic-
Then,

x; = PyuicMX
= K[R —RC|MX
= K[RR, (Rt, — RC)|X
= K[RRm (C —tm)] X
— K[RRm —RRm(R:MC — )X
- K[R —R'C'X

where the motion of a virtual camera from C' to its new
position, C’, is exactly the inverse of the motion of the ve-
hicle.

The key property enforced in our structure from motion
algorithm is that the motion of the virtual camera is in a
plane parallel to the ground plane. Therefore, we need to
know the ground plane. This can be calculated automat-
ically from vanishing points, or determined interactively
[19, 6]. Since this only needs to be done once, a semi-
automatic method is acceptable. The knowledge of the
ground plane is used to define a world coordinate system
(WCS) where the x and y axes span the plane, the z axis is
perpendicular to the plane, pointing up, and the origin is set
by choosing an arbitrary point on the plane. This is illus-
trated in Figure 2 (a left-handed coordinate system is used).
Defining the WCS this way makes it easy to constrain the
motion as desired.

With the WCS determined, we can define the virtual
camera projection matrix in the first frame, which is the
same as that of the static camera. The camera matrices in
the following frames will be determined with respect to this
camera. Using the notation in [11], let g, gy, g, be the
axes of the WCS in the camera coordinate system (CCS),
and let go be the origin in CCS. If (z,y) is the location of
the origin in the image, then go = A(x,y, f)T, where f
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Figure 2. The chosen world coordinate system.

is the known focal length, and X is the perspective depth,
which is set arbitrarily. The camera projection matrix is
then

P, = K|[g« 8 8 80|
= K[ Ro go |

where K is the known camera calibration matrix.

An incremental structure from motion algorithm similar
to [16] is used. The video is temporally downsampled to
provide a more stable wider baseline in the geometry cal-
culations. In the first two frames, an essential matrix is
estimated. RANSAC is used to remove errors in correspon-
dences. The pose of the second camera relative to the first is
determined by decomposing the essential matrix and choos-
ing one of four possible solutions [6]. Letting the first cam-
era be Py, and the relative pose be [Ry t1], the absolute
pose of the second camera is

[RoR1 (Roty + go)] (10)

This absolute pose of the second camera is optimized us-
ing Levenberg-Marquardt [12] by minimizing the repro-
jection error such that the motion of the camera is in the
ground plane. That is, the rotation is constrained to be about
(0,0, 1), the ground plane normal, and the center of projec-
tion is constrained to lie in the same plane as Py, which is
parallel to the ground plane. In total, there are four degrees
of freedom. Triangulation in two views is done optimally
by solving a 6th degree polynomial, which represents the
reprojection error parameterized by the choice of epipolar
lines [6].

In subsequent frames, the camera pose is estimated by
solving the Perspective-n-Point problem. We use the re-
cent algorithm by Lepetit et al [10], which is fast, non-
iterative, and gives very accurate results. Additional robust-
ness against noise is gained by using RANSAC. Triangula-
tion of points visible in multiple views is done by forming
a linear system and solving with iteratively reweighted least
squares.

After every frame is processed, bundle adjustment [18] is
used to refine the current solution. The parameters are the
camera center (3 unknowns for each camera, except Py),
the camera rotation about the ground plane normal (1 un-
known for each camera, except Pp), and point coordinates
(3 unknowns for each point). As before, the cameras are
constrained to move in the same plane as Py. Levenberg-
Marquardt [12] is used again to do the minimization of the
reprojection error.

When the structure from motion algorithm completes,
the vehicle’s motion direction (and thus pose) in frame ¢
is estimated as || — (C; — C;—1)]||, where C; is the virtual
camera’s center of projection in frame <.

The complexity of this step is dominated by bundle ad-
justment, but overall it is efficient. With the pose of the
cameras constrained, the number of degrees of freedom is
reduced, so our formulation is actually more efficient than
the general case. Performance can be further improved by
limiting the bundle adjustment to cameras and structure in
the last n frames.

4. Model Classification

The knowledge of the vehicle pose and the pose of the
camera allows us to reduce the model classification prob-
lem from 3-D to 2-D. This is important, because it makes
the problem easier, and the solution more reliable. Measur-
ing similarity in a lower dimensional space is always easier
than in a higher-dimensional one. In addition, model classi-
fication in 3-D would either require a dense reconstruction
of the vehicle in the video, or a fit of sparse reconstruction
to a model. Either option adds significant complexity, with
no guaranteed gain in performance. Furthermore, the solu-
tion for vehicle motion is easily constrained, as we have just
shown, whereas the solution for vehicle structure can not be
(easily) constrained at all. In other words, there is higher
confidence in the motion estimate than in the structure esti-
mate.

The problem is reduced to 2-D by rotating a potential
3-D vehicle model to the same pose as the vehicle in the
video, and projecting it to the image. To perform classifi-
cation, models from a database are projected in turn, and
the model with the best matching score is selected. This
approach depends on having access to a database of good
quality 3-D vehicle models, but this has become less of a
problem with the introduction of 3-D model sharing sites,
such as Google’s 3D Warehouse [1].

We would also like to point out that discretizing the ve-
hicle pose space and skipping the pose estimation will not
achieve the same result, unless the video capture is severely
restricted. For example, our method will also work with
a moving camera after adding a video stabilization mod-
ule. But there is great benefit even in the static camera
case; when the vehicle in the video is making a turn, our
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method can take advantage of seeing the vehicle from mul-
tiple viewpoints.

The previous work in vehicle classification, and object
recognition in general, has made good use of histograms
of oriented gradients as features. These seem to be very
stable, and have good discriminatory characteristics, espe-
cially when they are collected over multiple scales. We
make use of this type of features here as well. The fea-
tures are calculated the same way as SIFT [13] features, but
the rotation invariance of the descriptor is deliberately dis-
abled. The vehicles in the model image and the video image
are already normalized to the same view, so enabling rota-
tion invariance is actually detrimental. In addition, for the
same reason, when the features are matched between im-
ages (as discussed below), the matches are restricted to be
in similar scales. If the scale of a feature in the video image
is s, the scale, s’, of a matching feature in the model image
needs to be 0.75s < s’ < 1.5s.

Our strategy for measuring the similarity between an im-
age of a vehicle from a video and the image of a vehicle
from a model consists of two steps. First, we find feature
correspondences in the images, and then we compare the
relative positioning of the matched features in the model im-
age with the relative positioning of the corresponding fea-
tures in the video image. Feature correspondences are found
by finding the closest descriptor (measured with Euclidean
distance) in the model image to each descriptor in the video
image. If the distance to the closest descriptor is less than
a threshold, the match is valid. In addition, to further de-
crease the number of spurious matches, we only consider
features found at scales larger than some minimum scale
(for example, by ignoring features found in the first octave
of the Laplacian pyramid). The reason is that features found
at small scales miss the “big picture” and their correspon-
dences are not optimal in the global sense. Figure 3 shows
an example of valid feature matches between the video im-
age and the model image.

Let Sy = {(xi,x%)]i € [1, N]} be the set of valid fea-
ture matches in frame f, where x = (x,y) and the sub-
script indicates the model/video image, v;’ = x} — x1, and

vy = x4 — x3. The video-model similarity in frame f is

, 1Sy 2 LN
simyg(Sy) = <W) : —N(N ) ;j;l Diry;Mag;;
Diry; = 0537 97 +1)
Mag;; = exp(=||[vY[| = |v§ )

where M is the total number of features in the video image.
The total video-model similarity is the average of all frame
similarities:

F
sim(S) = % > simy(Sy) (11)
f=1

Figure 3. Example feature matches.

where F' is the total number of frames in the video. The
vehicle in the video is classified with the model having the
maximum similarity.

The video-model similarity is efficient to compute.
However, the vehicle classification speed decreases with a
larger model database, because every model needs to be
considered. To achieve a practical runtime performance
with large databases, we propose to use a hierarchical or-
ganization of the models, where dissimilar models can be
quickly identified, and skipped. This is the subject of our
future work.

5. Results

Vehicle recognition was evaluated on 20 video clips and
a database of 36 models. The length of videos ranged from
4 to 40 frames. The viewpoints of vehicles in the videos
can be described as “mostly front” and “mostly back”. The
video resolution was 1920x1080. 3-D vehicle models were
downloaded from [1], and their complexity ranged from
5,000 to 120,000 polygons. A subset of the models used
in the experiments is shown in Figure 4. Camera calibration
was performed using Jean-Yves Bouguet’s camera calibra-
tion toolbox. The ground plane was estimated using vanish-
ing points and verified interactively.

Vehicle recognition performance is shown in Table 1.
The first row indicates the performance of the algorithm in
its standard configuration, where all frames of the video are
used to determine the vehicle-model similarity. The next
two rows show the performance broken down by the gen-
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Figure 4. A subset of the models used in the experiments.

Correct Classification (%)
Rank 1 Rank 3
Multiple Frames 50 85
- Front view (8/20) 62.5 87.5
- Back view (12/20) | 41.6 91.6
Single Frame 15 40

Table 1. Vehicle recognition performance.

eral vehicle viewpoint. A rank-k classification means a ve-
hicle is classified correctly if it is ranked < k in the result
set. The result set is ordered using equation (11). Exam-
ples of correct and incorrect vehicle recognition are shown
in Figures 5 and 6.

The results show that our algorithm is excellent at iden-
tifying the most likely makes and models for vehicles in
video. The correct make and model is always top ranked.
This kind of performance lays very good ground work for a
second-stage fingerprinting algorithm, which can use very
fine features to determine the precise make and model for a
vehicle. The results also show that vehicles with a visible
front were classified more accurately than vehicles with a
visible back.

In addition to evaluating the algorithm in its standard
configuration, we also evaluated it in single-frame mode,
where only one frame of the video-clip is used in calculat-
ing the vehicle-model similarity. The purpose of this ex-
periment was to see whether classification performance im-
proves with taking advantage of multiple frame data.

Clearly, the multiple-frame performance is much better
than single-frame performance. This is not surprising since
each frame provides additional matching information to the
algorithm. The noise in feature matches is more tolerable
when more frames are available.

6. Conclusions

We presented a method for recognizing a vehicle’s make
and model in video clip taken from an arbitrary viewpoint.

The video-model similarity is determined by first match-
ing features similar to histograms of oriented gradients and
measuring the relative configuration of the features in video
and in the model. The results show excellent performance
at identifying the most likely vehicle make and model. In
addition, we confirmed that higher classification accuracy is
obtained when the front of the vehicle is visible.

We also presented a Bayesian approach for establish-
ing accurate correspondences in multiple view geometry. A
global motion pattern was used as a prior in this approach.
A structure from motion algorithm was then able to suc-
cessfully determine the vehicle pose from these correspon-
dences. In determining the vehicle pose, the key is to use
the knowledge of the ground plane to impose constraints on
the virtual camera motion.

The algorithm’s scalability to large model databases is
currently being investigated. We propose to use a hierarchi-
cal organization of the models, where dissimilar models can
be quickly identified, and skipped in subsequent computa-
tion.
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