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Abstract

Wide Area Aerial Surveillance (WAAS) imagery is cap-
tured by an array of smaller sensors sharing an optical cen-
ter; instead of one large sensor. It is desirable to generate a
single image (mosaic) from the sensor array, since it simpli-
fies higher level vision tasks. It is important that the mosaic
be of high quality, without noticeable seams, and be esti-
mated efficiently for every frame of the video.

We propose a piecewise affine model to handle image
distortions not captured by a homography. This model has
more degrees of freedom than a standard lens distortion
model used in previous work, yet can be estimated just as ef-
ficiently by carefully selecting a small number of constraints
in the optimization of model parameters. We have evaluated
our algorithm on publicly available WAAS imagery and the
results show our proposed model produces more accurate
mosaics than the widely used lens distortion model, thus
simplifying further stages of image analysis.

1. Introduction

The development of unmanned aerial vehicles (UAV),
advances in optics and digital photography, and increased
computational power has led to the growth of a particular
kind of imagery, called Wide Area Aerial Surveillance im-
agery (WAAS) [2, 3, 4]. This imagery is characterized by
its generation on aerial platforms, low temporal sampling
rate, spatial resolution of 0.5 m/pixel or better, and large
format (tens of megapixels). Furthermore, physical con-
straints require that the imagery is captured by an array of
smaller sensors sharing an optical center, rather than one
large sensor, as is illustrated in Figure 1. All of these char-
acteristics have non-trivial implications for computer vision
algorithms, such as stabilization, target tracking, and 3D re-
construction.

In this paper we consider the mosaicking problem, that
is the generation of a single image from the sensor array,
as if it were captured by a single (virtual) camera. Hav-
ing access to such image has at least two benefits: it makes
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it easy to see the extent of the geographic area being cap-
tured and thus simplifies UAV control, it avoids the problem
of tracking moving objects across several cameras, which
adds algorithmic complexity. High quality estimation is a
primary requirement. If it is inaccurate (has visible seams),
errors will result in algorithms that use this image is input.
For example, image stabilization will not be possible and
there will be many false moving object detections around
the seams.

The estimation of the mosaic must also be efficient. Even
though the cameras in the sensor array are fixed, there are
slight, but noticeable, changes in the sensor geometry at ev-
ery frame. These may be caused by vibration or imperfec-
tions in mechanical mounting. In any case, it means that we
cannot rely on a one-time, offline, estimate of the mosaic,
but must re-estimate it online for every frame.

The primary contribution of this work is a mosaicking
approach that satisfies both of these requirements. It is able
to generate high-quality mosaics by allowing a non-rigid
deformation of the image, and it is able to estimate this de-
formation efficiently by carefully selecting a small number
of optimization constraints. The results show that our piece-
wise affine model has better accuracy compared to the clas-
sic lens distortion model used in previous work [22, 20, 19].
Furthermore, we show that we can estimate our model in a
similar amount of time as a model with a smaller number of
degrees of freedom. We have performed our evaluation on
one of the publicly available WAAS datasets [2].

Before describing our approach in detail in section 3, we
review related work in the next section. Evaluation of our
method is presented in section 5, while section 6 concludes
and suggests remaining challenges for the future.

2. Related Work

The interest in mosaic computation has a rich history.
Some of the early applications include whiteboard or doc-
ument scanning [23], video enhancement [ 18], video com-
pression [ 1], and video indexing [10]. In all these appli-
cations, what is being mosaicked is a sequence of images
taken from the same camera, which is in contrast to the na-
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Figure 1. One frame of the imagery is captured by an array of
cameras (left), while it is desirable to work with only one image
per frame, as if it were captured by a virtual camera (right).

ture of mosaicking done here, where the images to be mo-
saicked come from different sensors. This makes the mo-
saic estimation problem more difficult since different sen-
sors potentially have significantly different camera calibra-
tions and image response functions.

One of the major problems in mosaicking is global align-
ment of a set of images. Since geometry (usually a homog-
raphy) is estimated between pairs of images, to generate a
mosaic from more than two images, several homographies
may need to be concatenated (multiplied) to estimate a cor-
rect transformation from one image to the reference image.
Each time two homographies are multiplied, a small error
is introduced. After a few multiplications, the accumulated
error is large enough to cause misalignment. This prob-
lem is addressed by [12, 21, 19]. The common solution is
to optimize all homographies of the mosaic at once, with
a prior topology calculation step if necessary [24]. In our
application, the number and arrangement of images in the
mosaic is known, therefore topology determination is not
necessary. However, a joint optimization of the geometry is
still needed.

Deviations from the pinhole camera model in the con-
text of mosaic construction are discussed in [22, 20, 21].
In [22, 20], a lens distortion model is adopted to handle
all residual error. Shum and Szeliski [21] propose a local
alignment step based on optical flow that handles arbitrary
camera model. However, this introduces too many degrees
of freedom and the estimation of this model is more likely
to get stuck in local minima.

A similar problem to mosaicking is video stabilization.
The goal there is to take an existing jittery image sequence
(usually from a hand-held camera) and use it to synthesize a
new sequence without any jittering. Warping the input im-
ages to their stabilized configuration without any artifacts
requires a non-rigid deformation of the input. Recent meth-
ods in this area [9, 15] have used a similar image defor-
mation model as in this work, called as-rigid-as-possible
deformation. However, estimating such deformation re-
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quires precise, uniformly distributed, correspondences be-
tween images. In our experience, the current state-of-art
feature detectors and descriptors do not produce such corre-
spondences.

Another approach to mosaicking was recently proposed
by Lin et al. [14]. There, an affine stitching field is esti-
mated, similar to our piecewise affine model. Instead of
using point correspondences directly to estimate the stitch-
ing field, which causes problems as mentioned above, the
authors formulate the problem as finding a smooth stitching
field that minimizes the difference between the SIFT de-
scriptors of the resulting (implied) correspondences. While
the stitching results are state-of-art, the flexibility of the al-
gorithm to fit generalized motion comes at a computational
cost. A MATLAB implementation is able to stitch a pair of
500x500 images in 8 minutes. In our domain, we are inter-
ested in stitching 6 images, each 4008x2672 in resolution,
which is not tractable by their approach.

3. Approach

As stated earlier, our goal is to generate a high qual-
ity mosaic that is suitable for higher-level computer vision
tasks, such as stabilization, tracking, and 3D reconstruction.
To facilitate the generation of this image, the sensors in the
array are arranged so that they all share an optical center
(or center of projection). Given the long distance from the
scene, a small translation between the centers of projection
can be discounted. In other words, the 3D transformation
from the pose of one sensor in the array to another is a rota-
tion. This helps, because it is well known [8] that if there is
no translation between two cameras, the image transforma-
tion between them is fully described by a homography

H=KRK™", (1)
where R is a 3D rotation matrix, K is the calibration matrix
of the destination camera, and K is the calibration matrix
of the source camera. By selecting one of the images in the
array as a reference, and estimating homographies between
it and the rest of the images in the array, all images can be
“registered”, or aligned to a common coordinate frame.

However, this model is only valid for a true pinhole cam-
eras, which is not physically practical. Additional factors
such as lens distortion corrupt this model. Therefore, a
model with more degrees of freedom is necessary to accu-
rately register the images. A common solution to this is
to adopt a global radial distortion model [8]. We have ob-
served that while this model improves the registration accu-
racy, it does not accommodate all of the deviations from the
pinhole model and an even more flexible, more local model
is needed. We propose a piecewise affine model to solve
this problem.
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3.1. Piecewise Affine Model (PAM)

The model which registers one image onto another needs
to have enough degrees of freedom to handle the image de-
formation. For a true pinhole camera, this model is a ho-
mography, which has 8 degrees of freedom. In practice, this
model does not hold and must be augmented with additional
transformations. A point p in one image is thus transformed
to point p’ in another image as:

p =H- L(p;0) )

where H is a homography and L is the additional transfor-
mation parameterized by 6. L is non-linear in general and
can be a flow field, or a lens distortion correction. Here we
propose to define L as a piecewise affine model:

K
L(q) =) d(m(q) — k) Axq 3)
k=1

where K is the number of pieces, m(q) is a function that
determines the corresponding piece for point ¢, and Ay is
an affine transformation. Each piece covers a unique region
of R2. In other words, the pieces define a tessellation of R2.

We have defined the tessellation to be triangular as fol-
lows. The image is first divided into a 2/N x 2N grid of equal
sized cells, with NV > 1. Each cell is then divided into 2 tri-
angles, such that a radial pattern is created. In other words,
cells in the northwest and southeast quadrants are divided
with an up-diagonal and cells in the northeast and south-
west quadrants are divided with a down-diagonal. The goal
of this construction is to facilitate the representation of ra-
dial distortions. The tessellation is illustrated in Figure 2 for
N =2.

The piecewise affine model is parameterized by the co-
ordinates of each grid point after the deformation. Let V;
be the known coordinates of grid point ¢ before the defor-
mation, and let V/ be the unknown coordinates of the same
grid point after the deformation. Given the three correspon-
dences of a triangle, V; < V/, V; Vj’, Vi ¢ V{, an
affine transformation for that triangle is estimated by solv-
ing a small linear system. Therefore,

0= [V/Vy--- Vil )

where M = (2N +1) x (2N +1). For example, in Figure 2
there are 25 grid points, giving 50 parameters.

3.2. Estimating PAM

The piecewise affine model, as other parametric motion
models, may be estimated using a direct method where
all pixels are used in optimization [6] or a feature-based
method. An advantage of a feature-based method is that
it is usually faster than a direct method. However, as men-
tioned earlier, the disadvantage is that it requires correspon-
dences to be uniformly distributed across the overlapping
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Figure 2. Tessellation of R? with respect to an image of width w
and height h.

region, and the correspondences must be precise (low in-
lier noise) to guarantee a high quality mosaic. On the other
hand, in a direct method, no correspondences are necessary.
What is being optimized there is the intensity difference (or
variance) of overlapping pixels. The disadvantage of this
method is that it uses all overlapping pixels in the optimiza-
tion, which can make the parameter estimation quite slow.

We initially used a feature-based approach, but the re-
sults were not satisfactory. After switching to a direct
method, we noticed immediate improvement in mosaic
quality. Unfortunately, as expected, the computational bur-
den was indeed a problem. In our domain, the number of
overlapping pixels in a 6-camera sensor array is over 35 mil-
lion! This number of pixels does not lend itself to real-time
parameter estimation.

Baker et al. [5] made the important observation that not
all pixels are necessary in this optimization. In fact, pixels
with zero, or very small gradients have no effect on conver-
gence. By removing such pixels altogether, great computa-
tional savings are made. We have used a similar idea in our
approach, but ensuring the pixels selected for optimization
are uniformly distributed across the mosaic.

The mosaicking surface is first divided into a grid of
P x P equal sized cells. We select one pixel from each
cell, provided there is at least one pixel in the cell that over-
laps two or more images. The pixel that gets selected is the
one that has the highest Harris corner measure in one of the
overlapping images. In other words, we select pixel p as

p = arg max det(C;) — ktr(C;)? )

where Cj is the second-moment matrix of pixel . By se-
lecting pixels in this manner, we ensure that all parts of the
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mosaic are aligned well and that each selected pixel makes
as much contribution to the optimization of parameters as
possible.

When using a direct method, an initial solution of the
parameters is required. The parameters of L are initialized
so that PAM is an identity map. The parameters of H are
initialized by finding corresponding points in the images,
using SIFT [17] for example, and using a robust RANSAC
estimator. When mosaicking more than two images, the
homographies estimated are homographies to the reference
image. For images that do not overlap with the reference
image, a homography is estimated by concatenating appro-
priate neighboring homographies. The resulting homogra-
phies to the reference image are then jointly optimized to
minimize the distance between corresponding points on the
mosaicking surface, as expressed in this error function:

E(Hy,--- ,Hy) =Y ||H;p; — Hip,|I3
P;:P;

(6)

where [ is the number of images, H; is a homography from
image ¢ to the reference image and p,, p; are a pair of cor-
responding points from images ¢ and j.

Given an initial solution, the parameter estimation pro-
ceeds in a coarse-to-fine fashion. Since our initial solution
is often quite accurate, we build an image pyramid with only
2 levels. In each level, we first minimize the intensity vari-
ance of the selected pixels over the homography parameters,
keeping the PAM parameters fixed. This helps to ensure that
the final warp is as rigid as possible, and the non-rigid de-
formation only accounts for the residuals not handled by the
homography transformation. Then we minimize the inten-
sity variance over the PAM parameters, keeping the homog-
raphy parameters fixed. Formally, we minimize the follow-
ing objective:

E(Hlv"' 7HI7017"' 791)

O(p)
2. ﬁ > (1 (L5 (H,'9)) = u@)” (D)

o

where p is one of the selected pixels on the mosaicking sur-
face, O(p) is the number of overlapping images at pixel p,
I,(x) is the intensity of image o at location x, and pu(p) is
the mean intensity of the overlapping pixels. Note that tak-
ing the inverse of PAM (L ~!) is more expensive than tak-
ing the inverse of a simple homography. In practice, most
of the image deformation is handled by the homography, so
that it is sufficient to use small grid sizes in PAM (such as
4x4), which does not make the inverse computation a signif-
icant problem. We minimize the objective using Levenberg-
Marquardt algorithm [16].
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3.3. Intensity correction

Geometrical alignment is not sufficient to produce a
seamless mosaic. Notice in Figure | that there is large varia-
tion in intensity across different cameras in the sensor array.
Therefore, intensity alignment is also needed to generate a
seamless mosaic. There are various approaches to do this
in the literature, such as [13]. Here we use a simple and
fast approach that works well in practice to remove gross
intensity differences.

We parameterize the differences in intensity as differ-
ences in camera gain (scaling factor). In other words, the
intensity corrected image [ " is a scaled version of the input
image I:

=gl (8)
where g is an unknown gain correction factor. Therefore,
we wish to estimate gain correction factors for each cam-
era, such that the differences in intensity in the overlapping
regions are minimized. It is easy to compute a correction
factor for image A that optimally minimizes the intensity
difference from image B. However, such an estimate is
likely to conflict with a correction factor for the same image
that minimizes the intensity difference from image C'. It is
clear the correction factors must be estimated jointly.

The pairwise correction factors provide a useful set of
constraints for joint optimization. Consider the set of equa-
tions that must hold for optimal gain correction factors.
Each pair of overlapping images A and B generates an
equation such as this

gala = g¢gBlB ©)]
IAr, = Iy (10)
dB

where g4 and gp are unknown. For the same pair of images,
we have

(1)

where g4 p is the known optimal pairwise correction factor.
This implies that we have

gapla =1Ip

ga —gags =0 (12)
for each pair of images. Stacking these equations together
creates a linear system, whose non-trivial solution is the op-
timal set of gain correction factors, up to scale. We find the
appropriate scale by assuming that the average of the cor-
rections factors should equal 1. This minimizes the amount
of intensity correction from input. It is necessary that the
number of overlapping pairs of images be at least the num-
ber of images, but this is always satisfied for sensor arrays
in our domain.

This intensity correction is performed before geometric
alignment. To determine which pixels are in the overlapping
regions, we use the initial solution of mosaic geometry from
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SIFT correspondences. Knowing the optimal solution is not
necessary here. After geometric alignment, the images are
blended using [7] to remove any remaining seams resulting
from residual photometric differences or alignment errors.

4. Complexity and Implementation

Parameters of PAM are estimated using non-linear opti-
mization. The runtime depends on the number of iterations,
and the complexity of each iteration. In each iteration, ev-
ery sample is transformed to all the overlapping images and
variance of the intensity at that location is estimated. There-
fore, the complexity of each iteration is O(SK), where S is
the number of samples and K is the number of overlapping
images. Note that S € O(P?). When using analytical Jaco-
bian, the number of iterations in each round of optimization
is 19 on average.

For intensity correction, we first estimate the pairwise
gain correction terms and then solve a small linear system
using SVD. Estimating the pairwise gain correction terms
is O(MW H) where M is the number of overlapping pairs
of images and W, H is the width and height of each image.
In common sensor array configurations, M < 2K, where
K is the number of images. The size of the linear system is
M x K, which can be solved in O(K?) time.

We have implemented the algorithm just presented in
C++. Our unoptimized implementation can estimate a mo-
saick of 6 WAAS images in 50 seconds for a model with
N = 2. The implementation is available on the author’s
website [1].

5. Results

The proposed algorithm was evaluated on the CLIF2006
dataset [2], which was captured by an array of 6 cameras.
Each of the six images is grayscale and 4008x2672 in size.
The performance of mosaicking was quantified using (7),
except that all overlapping pixels were used in the evalua-
tion. In the following discussion and plots, this number is
divided by the number of pixels to give an average variance
of intensity.

To determine the appropriate number of samples, needed
to robustly estimate the mosaic, we took an empirical ap-
proach. Note that the number of samples is proportional to
the sampling grid size P. Usually, the number is < P2,
since many of the cells do not contain any pixels with over-
lapping images. In the dataset used for evaluation, a value
of P = 100 corresponds to approximately 2762 samples,
P = 300 corresponds to 23568, and P = 450 to is 52316.
Five images were randomly selected from the dataset, and
mosaicking performance was measured for different values
of P. This plot can be seen in Figure 3 for two different
values of N, an indicator of model complexity. Both plots
in the figure show that in general, more samples lead to bet-
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Figure 4. Effect of PAM complexity on mosaicking accuracy.

ter accuracy. However, it is also interesting to see that the
model with higher complexity (N = 2) is more susceptible
to falling into local minima, as is evidenced by several sharp
peaks for relatively high values of P. From these plots, we
determined that an appropriate value of P for N = 1 is
350 and for N = 2 is 420. For both of these models, the
number of samples is a small fraction of the total number of
overlapping pixels, which is in the millions. As discussed
below, we can generate a better quality mosaic using this
smaller number of pixels than previous work which used all
overlapping pixels. This shows the power of our sampling
strategy.

Similarly, to determine the appropriate model complex-
ity (value of V) needed to robustly estimate the mosaic, we
also took an empirical approach. For the same five images
selected earlier, we measured mosaicking performance for
different values of V. This plot can be seen in Figure 3,
but a more informative plot is in Figure 4, where the mod-
els are compared with the empirically selected values of P.
As expected, the model with higher complexity is able to
generate a more accurate mosaic, although the difference
between the two models is not large. Since our primary
goal is the most accurate mosaic possible, we prefer model
with N = 2. However, if the efficiency is a more important
concern in some applications, model with N = 1 may be a
good alternative.

We have also compared our approach with competing
approaches [22, 20, 19] that use the lens distortion model
(LDM) for non-rigid deformations. Our implementation
models 2 radial distortion coefficients and 2 tangential dis-
tortion coefficients. In many of these approaches, the objec-
tive function is minimized using all overlapping pixels. In
the dataset we used for evaluation, there are tens of millions
of such pixels, which makes using all of them intractable.
Therefore, in our implementation, we uniformly sampled
200,000 overlapping pixels for minimizing the objective.
Similarly, for the baseline comparison with no non-rigid
deformation (homography only), we have also used “only”
200,000 pixels in the minimization. Quantitative compar-
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Figure 5. Comparison of different deformation models.

ison with the lens distortion model as well as the baseline
is illustrated in Figure 5. The lens distortion deformation
model generates better mosaics than no deformation at all,
however, the proposed piecewise affine model is able to
achieve futher improvement, outperforming the LDM. Note
that it takes more than 3 minutes to compute an LDM mo-
saic with that many pixels in our implementation.

Qualitative comparison of the piecewise affine model
and the standard lens distortion model is illustrated in Fig-
ure 6. The piecewise affine model has practically perfect
registration, while the lens distortion model has some re-
maining error. More qualitative results are shown in Fig-
ure 8 and in the supplemental material.

We evaluated the proposed intensity correction algorithm
qualitatively. As Figure 7 shows, our approach removes
most of the intensity differences between the different cam-
eras. Any remaining differences will disappear after blend-
ing the images [7].

Our mosaicking algorithm is quite efficient. With N = 2
and P = 420, a mosaick of 6 WAAS images is estimated in
50 seconds on a 3.0 GHz Intel Xeon X5450 CPU. We are
in the process of porting our approach to the GPU. Prelimi-
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nary analysis shows potential for real-time performance on
WAAS imagery.

6. Conclusions

Mosaicking a sensor array from WAAS is the first step
in the semantics extraction process. This step is critical, be-
cause all the following vision tasks depend on it being reli-
able. We have proposed an approach that generates high-
quality mosaics in an efficient manner, suitable for such
tasks. A comparison with the standard lens distortion model
used in previous work reveals that the proposed model is su-
perior.

In the future, we plan to investigate more approaches
for efficient joint optimization of parametric motion mod-
els, such as sampling strategies, objective criteria, and nu-
merical methods. At the same time, we plan to complete
a GPU implementation of our approach with real-time per-
formance.
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