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Abstract

Wide area aerial surveillance data has recently prolif-
erated and increased the demand for multi-object tracking
algorithms. However, the limited appearance information
on every target creates much ambiguity in tracking and in-
creases the difficulty of removing false target detections.

In this work we propose to learn motion patterns in wide
area scenes and take advantage of this additional informa-
tion in tracking to remove false alarm and reduce tracking
error. We extend an existing multi-object tracker for wide
area imagery by incorporating the motion pattern data as
further probabilistic evidence. Scalability is ensured by di-
viding the imagery into tiles, processing each tile in paral-
lel, and handing off tracks between tiles when necessary.

Evaluation on sequences from a real wide area im-
agery dataset shows this approach outperforms a compet-
ing tracker not making use of such data.

1. Introduction
The increased deployment of aerial sensors for wide area

surveillance has generated huge amounts of imagery, rich
with interesting information. This imagery, however, is be-
yond our ability to analyze manually. It often covers a ge-
ographic area of a few square kilometers, which can not be
analyzed or monitored at once by one person. Spreading the
workload across several people is possible, but at the cost of
missing the big picture and more financial resources.

Computer vision offers to solve this problem by auto-
matically processing the imagery into a compact form that
is more useful and understandable to a person. One of the
fundamental ways that motion imagery is summarized is by
estimating the tracks of moving objects. These tracks tell
us a lot about the “life” in the region of interest, and are
essential cues for higher level reasoning tasks, such as ac-
tivity recognition. The tracking problem has been studied in
many ways for a long time [21], and we have reached a point
where excellent results are obtained in many environments
[7]. Our domain of wide area surveillance, however, brings

its own set of challenges that have not been fully solved,
and its own set of opportunities that have not been fully ex-
ploited. The challenges are multiple-sensor video capture,
which requires accurate registration of the different sensors,
low sampling rate, which undermines the common motion
smoothness assumption, and limited grayscale resolution of
moving targets, which prevents the use of robust and dis-
criminative appearance models.

Current state of the art multi-object tracking methods
are detection based [5, 14, 16, 9], which means that tar-
get detections are first determined over a sliding window of
frames, and these detections are then associated into tracks.
These detections are determined in one of two ways: from
background subtraction, or using an object detector. In our
domain, the small target size makes it difficult to train an
object detector with sufficient accuracy. For this reason,
background subtraction has been the common way of ob-
taining target detections [14, 16].

In this work, the moving targets of interest are vehicles.
One of the good characteristics of tracking vehicles in our
imagery is that the motion of each vehicle is highly pre-
dictable most of the time. Vehicles move on roads, at fairly
constant velocity, except at intersections. This characteris-
tic induces motion patterns in the imagery, which can be
exploited to minimize ambiguity in data association dur-
ing tracking and mitigate the weakness of the appearance
model. The use of motion patterns for improving tracking
performance has been shown before [3, 22, 24], but it has
not been applied to wide area aerial surveillance imagery.

Our primary contribution in this work is a multi-object
tracker for wide area imagery that takes advantage of mo-
tion patterns in estimating tracks. It accomplishes this by
extending the tracker introduced in [14] and incorporating
a motion pattern prior in a conditional distribution of the
predicted detection state given the current detection state.
Our results show that incorporating this motion pattern prior
greatly reduces the false alarm rate and ID switches, with a
small negative impact on the object detection rate. Further-
more, we discuss a scalable implementation of the tracking
algorithm that is able to track vehicles in a region of a few
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square kilometers in real-time.

2. Related Work
Tracking targets in wide area aerial surveillance video

has recently received a lot of attention [14, 16, 20]. The ap-
proach of Xiao et al. [20] is detection based, where detec-
tions are associated using the classic Hungarian algorithm.
The association cost matrix is computed by combining tar-
get association cost matrix and the novel target-pair asso-
ciation cost matrix, which allows the inclusion of spatial
constraints between neighboring targets. These spatial con-
straints formalize the idea that a pair of vehicles in the cur-
rent frame is more likely to match a pair of vehicles in the
next frame when the distance and speed difference between
the vehicles is preserved. However, this assumption does
not always hold, and applying it uniformly to all targets may
lead to inappropriate associations. The appearance model in
this work is template based, which may have problems with
lighting changes and varying backgrounds. Tracks are ini-
tialized using three-frame subtraction, but otherwise back-
ground subtraction is used for detection.

In [16], Reilly et al. also use the Hungarian algorithm
for association of detections, but propose to increase its ef-
ficiency by dividing the image into cells and computing the
associations within each cell. The matching cost between
targets takes into account spatial proximity, velocity orien-
tation, orientation of the road, and local context between
cars. The use of local context only helps on freeways, where
the relative position between targets does not change much
over time. On most city roads, where cars change lanes,
pass, stop, and turn, this kind of constraint would be less
helpful and may cause incorrect associations.

One limitation of using the Hungarian algorithm for as-
sociating detections is that it works frame to frame, and does
not take advantage of motion and appearance smoothness
that holds over several frames. This property has been ex-
ploited by several authors [14, 5, 9, 23] to achieve state of
the art results. In the domain of wide area aerial surveil-
lance, Prokaj et al. [14] show how the space of possible
detection associations is significantly reduced by solving a
binary labeling problem. This is very useful in reducing
false alarm rates and minimizing track fragmentation.

A min-cost flow [23] or Linear Program formulations [5]
of multiple-target tracking have been proposed as a promis-
ing alternative. The advantage here is that a globally opti-
mal solution can be obtained very efficiently. However, one
disadvantage of the Linear Programming formulation is that
one must specify a priori locations where objects enter the
scene and exit. Furthermore, these methods are less tolerant
to false detections and may create many short tracks.

Motion patterns have been studied in previous works
from various perspectives. [18, 25] use motion patterns to
do scene understanding, and [25] also includes sources and

sinks as high-level semantic prior. Since motion patterns
contain rich information of the scene, the learning results
are used to detect anomalous events [8, 19], and learn traffic
rules [11]. [24, 2] use motion pattern as prior information to
perform tracking. However, different from general scenes,
wide area scenes usually have complex road networks, so
motion pattern segmentation [24] is difficult if not impossi-
ble. Also, high-rise buildings in aerial images cause serious
parallax, which may bring in false trajectories.

3. Approach
Our goal is to track all moving objects in the video from

frame to frame. As mentioned in the introduction, wide area
aerial surveillance imagery is captured by an array of sen-
sors. Therefore, the input to our algorithm is not one video
stream, but rather an array of video streams. Traditionally,
there are two ways to handle this. One is to track objects
independently in each video and then hand-off the tracks as
they cross from the field of view of one sensor to another
one. The second way is to first mosaic the array of sen-
sors, and then estimate tracks on the resulting single video
stream. In this work we take a hybrid approach, where we
first mosaic the sensor array and then divide the stabilized
and georeferenced imagery into a number of tiles for paral-
lel processing. This offers an advantage of seeing the “big
picture” of the area under surveillance provided by the mo-
saic and at the same time retains the ability to do parallel
processing with an optimal number of tiles. We use the mo-
saicking algorithm proposed in [15] and briefly describe it
in the next subsection.

One of the most successful classes of tracking algorithms
is hierarchical [13, 4, 9, 10]. Such approaches first esti-
mate short tracks or tracklets over a brief time period and
then iteratively link these tracklets into long tracks. Track-
lets are determined using nearest neighbor association [13],
affinity measures [9], or particle filtering [10]. We adopt
an approach presented in [14], which determines the track-
lets optimally by maximizing the joint probability of a set
of detections over a temporal window. Here we extend it
to take advantage of learned motion patterns during data as-
sociation by incorporating motion pattern priors in the joint
probability distribution.

The tracking algorithm and its extension is described in
subsection 3.2. We explain how we learn the motion pat-
terns in subsection 3.3. The approach described in [24] is
well suited for our domain and is described there. Brief dis-
cussion on scalability is in subsection 3.4.

3.1. Mosaicking

In mosaicking we are concerned with the generation of
a single image from the sensor array, as if it were captured
by a single (virtual) camera. High quality estimation is a
primary requirement. If it is inaccurate (has visible seams),
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Figure 1. One frame of the imagery is captured by an array of
cameras (left), while it is desirable to work with only one image
per frame, as if it were captured by a virtual camera (right).

errors will result in tracking and other algorithms that use
this image is input.

In order to generate a high quality mosaic, the model
which registers one image onto another needs to have
enough degrees of freedom to handle the image deforma-
tion. For a true pinhole camera, this model is a homogra-
phy, which has 8 degrees of freedom. In practice, this model
does not hold and must be augmented with additional trans-
formations. In [15], these transformations are modeled with
a piecewise affine model.

The piecewise affine model is estimated by minimizing
the variance in intensity of overlapping pixels. To make
this process more efficient, only a fraction of the overlap-
ping pixels is used in the optimization. These pixels are
selected to be spatially distributed and with a high Harris
corner measure. Sampling pixels in this manner helps to
ensure that all parts of the mosaic are well registered while
maximizing the contribution of the few selected ones in the
optimization.

Geometrical alignment alone is not sufficient to produce
a seamless mosaic, because each camera in the sensor ar-
ray has different exposure or response function in general
(see Figure 1). Therefore we also try to do a coarse inten-
sity alignment of the sensor array. As suggested in [15], we
parameterize the differences in intensity as differences in
camera gain (scaling factor), and solve for the jointly opti-
mal scaling factors. Any remaining photometric differences
or alignment errors are removed by blending the images us-
ing [6].

3.2. Tracking

As mentioned earlier, we take a hierarchical approach to
tracking. That is, we first estimate short tracks, or tracklets,
over a short temporal window and then associate them with
an existing set of tracks. The association of tracklets with
existing tracks is a relatively easier problem than inferring
the tracklets themselves, therefore we focus on the tracklet
inference problem here.

The input to our algorithm is a set of object detections
(blobs) in each frame, which we estimate using background
subtraction. Each detection in the first frame of the win-
dow is a potential object. Therefore, we find an optimal
tracklet, or a set of tracklets, starting at each detection in
the first window frame. This is not a problem, because for
detections that are false alarms, the model of a valid track-
let (consistency of motion and appearance) is not satisfied,
and the tracklet is discarded. Tracklets that start in the sec-
ond or later frame of the window are found when the sliding
window shifts to that frame.

With the exception of missed detections, given a detec-
tion of an object in one frame, we know there must be an-
other detected instance of that object located “nearby” in
subsequent frames. By recursively applying this idea, a di-
rected acyclic graph called an association graph, or detec-
tion graph is constructed. This graph stores all possible as-
sociations of object detections over time. The number of
these associations (>= the number of paths from the root
down to leaves) is large and intractable to evaluate in en-
tirety. The key idea of [14] is to first remove inconsistent
detections in this graph by solving a binary labeling prob-
lem, which is very efficient. Once this has been done, the
search space of paths in this tree is significantly reduced,
and the few (often one) remaining possible paths are easily
extracted.

Missed detections, due to occlusion or background sub-
traction failure, are easily handled in this framework by gen-
erating virtual detections in this graph. Any time a detection
in frame t does not have anything to link to in frame t+1, a
virtual detection is generated by predicting the location and
appearance of the target in the next frame. This procedure is
also recursive, so that when a newly added virtual detection
does not have nearby detections in the next frame, the pro-
cess is repeated. The graph and the following computation
does not change.

The binary labeling problem is posed as MAP inference
in a Bayesian network, which is constructed directly from
the detection graph. This formulation allows easy incorpo-
ration of other evidence, such as motion patterns, in to the
problem. The joint probability distribution of detection la-
bels y and observations o is factorized as

p(y,o) = p(y0)
∏

i,j,t>0

yt
inear yt−1

j

p(yti |yt−1
j )

∏
i,t>0

p(ot
i|yti) . (1)

where yti is a binary random variable denoting the label of
a detection i at frame t, and ot

i is the observed properties of
each detection (location, appearance, etc.). This factoriza-
tion is illustrated in Figure 2.

To incorporate motion pattern evidence into the prob-
ability distribution, only the conditional distributions
p(yti |y

t−1
j ) need to be modified. Where previously only
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Figure 2. Example of the structure of the graphical model. Each yt
i

is a binary variable that represents a detection label. The shaded
nodes represent the measurements associated with each detection
(location, appearance, etc.).

the appearance similarity and motion likelihood terms were
used, we now add another motion pattern prior term, g,
which is assumed to be independent of the previous two
terms. The conditional probability table now takes the form
shown in Table 1.

As the motion likelihood, the motion pattern prior uses
the filtered (posterior) state of a linear Gaussian motion
model in estimating a probability. A standard linear Gaus-
sian motion model is defined as follows:

zt+1 = Azt + w (2)
xt+1 = Hzt+1 + v (3)

where zt+1 is the state vector, which includes the object
position and velocity, xt+1 is the measurement vector of
the object position, w ∼ N (0,Q) is the process noise, and
v ∼ N (0,R) is the measurement noise.

In our implementation, the motion pattern prior g is es-
timated using a kernel density, which is learned in the be-
ginning of the sequence. This kernel density is expressed
as

g(yti) ≈
M∑
n=1

exp
(
−eT

nΣ−1en

)
(4)

where

en =
(
z̄it.x− gn.x, z̄it.y − gn.y,

z̄it.vx − gn.vx, z̄
i
t.vy − gn.vy

)T
,

(5)

z̄it is the posterior state estimate, and gn = (x, y, vx, vy)
T

is a motion pattern point (explained below). The covariance
Σ is specified in experiments.

3.3. Learning Motion Patterns

A motion pattern is a smooth and compact spatio-
temporal structure that describes a set of neighboring ob-
jects undergoing coordinated movements. As pointed out
in [22, 24], when tracklet points are embedded into
(x, y, vx, vy) space, manifold structures emerge. In the mo-
tion pattern learning framework, the input are tracklets from

an arbitrary multi-object tracker. In this work we use track-
lets from [14] (acting as a bootstrap). In wide area scenes,
many tracklets are not caused by real object movement
(positive tracklets), but parallax instead (negative tracklets).
However, compared to positive tracklets, negative tracklets
are usually short, the movement is usually small and the
covered distance is often limited. Making use of these prop-
erties, most false tracklets can be removed.

For the remaining tracklets, velocity (vx, vy) is calcu-
lated on tracklet points, and 2D information is transformed
into (x, y, vx, vy) space, in which Tensor Voting is used
to explore manifold property. Then we filter out outliers
based on the local geometric structure. The output is mo-
tion pattern information represented by a group of points
gn = (x, y, vx, vy) , n = 1, 2, ...,M .

3.3.1 ND Tensor Voting

The key step in motion pattern learning algorithm is using
Tensor Voting [12] to analyze the local structures at input
ND points, so we briefly explain it in this section. Tensor
Voting is a perceptual organization method enabling us to
analyze geometric structure and estimate dimensionality.

For each input ND point, its geometric information is
encoded in a second order, symmetric and non-negative ten-
sor T . T is a N × N matrix or an ellipsoid in ND space.
Its eigenvectors corresponding to non-zero eigenvalues rep-
resent the point’s normals, and eigenvectors corresponding
to zero eigenvalues represent the point’s tangents. T can be
decomposed as,

T =

N∑
i=1

λieiei
T

=

N−1∑
i=1

(λi − λi+1)

i∑
k=1

ekek
T + λN

N∑
i=1

eiei
T

(6)

where {λi} are the eigenvalues in descending order, and
{ei} are the corresponding eigenvectors. This way, lo-
cal geometric information such as dimensionality and nor-
mal/tangent space at every point can be estimated by ex-
amining the eigensystem of its tensor. For instance, the di-
mensionality d of the structure that a point belongs can be
calculated from the gaps between two consecutive eigenval-
ues.

d = N − argmax
i

(λi − λi+1) (7)

Briefly speaking, input ND points are encoded with ten-
sors. They propagate their information to neighbors’, and
collect information from them, in a voting process. Then,
the local geometric information of each point can be ob-
tained by eigen decomposition analysis of its tensor.
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yti = 0 yti = 1
yt−1
j = 0 0.5 0.5
yt−1
j = 1 1− a(ot

i,o
t−1
j )m(ot

i)g(o
t
i) a(ot

i,o
t−1
j )m(ot

i)g(o
t
i)

Table 1. Conditional probability distribution of detection i at time t given a detection j at time t − 1. The motion pattern prior term g
mitigates the weakness of the appearance model a and motion model m.

3.3.2 Outlier Filtering

False tracklets bring in outlier in motion pattern space. The
saliency of the structure that has i, i = 1, 2, ..., N − 1 nor-
mals is λi − λi+1, and λN is the saliency of un-oriented
structure. Summing the saliency together, λ1 is an esti-
mate of the probabilities for all possible manifold structures.
Thus, all points are ranked according to their λ1, and the
bottom ones are filtered out as specifed in the experiments.

3.4. Parallel Processing

Wide area imagery often covers a region of several
square kilometers, which means the number of vehicles that
needs to be tracked is in the thousands. In order to achieve
real-time processing at this scale, the tracking task needs to
be parallelized and divided among several machines. A nat-
ural way to divide up the work is to create a grid of “tiles”,
each covering an equal area of the monitored region (we
assume the imagery has been stabilized and georegistered),
and run an independent tracker on each one. This is illus-
trated in Figure 3. The tiles should have a small overlap re-
gion to facilitate track hand off and their size set according
to the tracking algorithm’s resource requirements. For ex-
ample, we have experimented with tiles roughly 2100x2100
in size.

Even though each tracker estimates tracks on only a
small portion of the region under surveillance, we can avoid
track fragmentation arising from the grid by handing off, or
linking, tracks for targets that move from the field of view
of one tile to the next. To make this process more robust,
the tiles have a small overlap region, as mentioned earlier.
We have implemented a simple track linking approach that
works as follows.

Whenever a new track is initiated in an overlap region,
the initiating tile sends a “new-track” message to the over-
lapping neighbors, which contains the track’s ID and its ini-
tial trajectory. At the same time, each tile maintains a set
of tracks that have terminated in an overlap region. On ev-
ery frame, the set of terminated tracks is matched against
the set of new tracks. Whenever a terminated track matches
with a new track, a “hand-off track” message is sent with the
trajectory of the terminated track to the tile containing the
new track. The historical trajectory is then merged into the
new track. Matching of terminated tracks with new tracks
can be done with the Hungarian algorithm for significant
robustness. However, we have found that having a reason-
able overlap region allows a greedy track matching algo-

Figure 3. Parallel estimation of tracks on a cluster of computers is
enabled by creating an overlapping grid of tiles and linking tracks
that move between the tiles.

rithm with no loss in accuracy.

4. Results

We have evaluated our tracking algorithm on a sequence
from a wide area imagery dataset [1]. This dataset is col-
lected from an aerial platform flying in a circular pattern
over Ohio State University. The dataset is captured at about
2 frames per second and contains significant parallax from
campus buildings and trees. There are more than 4000
frames in the dataset, with each frame roughly 6500x7500
size. We have stabilized and georeferenced the dataset to
0.75 meters per pixel resolution before tracking. For quanti-
tative evaluation we selected a 1312x738 region in the mid-
dle of the persistently visible area and manually determined
tracking ground truth for 100 frames. The selected sequence
has 205 tracks of vehicles, each being about 10x5 pixels in
size.

Moving object detection was done using background
subtraction. The background is modeled as the mode of a
(stabilized) sliding window of frames. A tracking window
size of 12 frames, corresponding to about 6 seconds of video
was used. In motion pattern learning stage, given an in-
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Without MP With MP
ODR 0.28 0.23

MODR 0.33 0.29
FAR 0.85 0.19
SWP 0.55 0.35
BRK 0.75 0.46

Table 2. Vehicle tracking performance with and without motion
patterns (MP) on wide area imagery. Please see the text for metric
definitions.

put tracklet, we first calculate the movement of every track-
let point compared to the starting of the tracklet, and re-
move the tracklet if the median of the movement is smaller
than 6 pixels. That is because the tracklet points caused by
parallax often constrained in a small region, while track-
lets caused by real moving objects occupy a large area.
The covariance Σ in (4) is empirically determined to be
Σ = diag(10, 10, 2, 2). In outlier filtering, all points are
ranked according to their λ1, and the bottom 10% are fil-
tered out.

Several metrics were used to evaluate performance: ob-
ject detection rate (ODR), moving object detection rate
(MODR), false alarm rate (FAR), mean cumulative swaps
of tracks (SWP), and mean cumulative broken tracks
(BRK). To calculate these metrics we determine a 1-1 as-
signment of estimated detections to ground truth detections
using the Hungarian algorithm by maximizing the detection
overlap. A correct detection is a detection in an estimated
track that overlaps with a detection in a ground truth track.

ODR is defined as the number of correct detections di-
vided by the length of all ground truth tracks. Since our
ground truth has annotations for vehicles that come to a
stop after initial movement, the ODR is going to be de-
pressed when the input to the tracker is only moving ob-
ject detections from background subtraction. Therefore, we
also define a MODR, where the ground truth detections cor-
responding to stationary vehicles are removed. The FAR is
defined as the number of false positive detections divided by
the total number of estimated detections. Finally, BRK and
SWP metrics are defined in [17] to measure multi-object
tracking performance and are similar to track fragmentation
or id switch rates found in the literature.

Quantitative results using the metrics are shown in Ta-
ble 2. We have compared our proposed approach with mo-
tion patterns to one without, as described in [14]. Further-
more, Figure 4 shows the motion pattern learning process.
In (a), the initial tracklets are displayed. We can see that
there is a large number of false tracklets from parallax or
false association. (b) shows the motion pattern learning re-
sults, which more or less correspond to the road network.

The results show that motion patterns significantly re-
duce the false alarm rate with a small corresponding de-
crease in the object detection rate. This is because most of

Figure 4. (a) Initial tracklets used to learn motion patterns. (b)
Learned motion patterns.

the false alarms come from moving objects detections due
to parallax and these are denoised by tensor voting. Fur-
thermore, the number of ID switches and track fragmenta-
tion has also decreased with the use of motion patterns, as
is evident in the decrease in the track swap rate and bro-
ken tracks rate. It’s another indication that ambiguity dur-
ing tracking has been reduced. While we have not shown
this quantitatively, the reduced ambiguity has had another
positive effect, and that is an increase in the computational
efficiency of the tracker. Tracks were estimated on the eval-
uation sequence at about 1 frame per second.

5. Conclusions

Tracking in wide area motion imagery presents several
challenges, one of which is the limited appearance infor-
mation in every target. In this work we have shown how
motion patterns learned from the sequence help overcome
the limited appearance and reduce tracking error. Results on
sequences from real wide area imagery show our algorithm
outperforms a competing tracker, which does not make use
of such motion pattern data, on several metrics.

In the future, we plan to extend this work by learning
dynamic motion patterns online and optimize their contri-
bution in the tracker with a motion pattern confidence map.
Such change will enable persistent tracking of targets over
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long time periods.

6. Acknowledgments

This work was supported in part by grant DE-FG52-
08NA28775 from the U.S. Department of Energy and by
funding from Lawrence Livermore National Laboratory.

References

[1] CLIF 2006. https://www.sdms.afrl.af.
mil/index.php?collection=clif2006. 5

[2] S. Ali and M. Shah. A lagrangian particle dynam-
ics approach for crowd flow segmentation and stability
analysis. In IEEE CVPR, pages 1 –6, 2007. 2

[3] S. Ali and M. Shah. Floor fields for tracking in high
density crowd scenes. In ECCV, volume 5303 of Lec-
ture Notes in Computer Science, pages 1–14. Springer,
2008. 1

[4] M. Andriluka, S. Roth, and B. Schiele. People-
tracking-by-detection and people-detection-by-
tracking. In IEEE CVPR, pages 1–8, 2008. 2

[5] J. Berclaz, F. Fleuret, E. Turetken, and P. Fua. Mul-
tiple object tracking using k-shortest paths optimiza-
tion. IEEE PAMI, 33(9):1806 –1819, sept. 2011. 1,
2

[6] P. J. Burt and E. H. Adelson. A multiresolution
spline with application to image mosaics. ACM Trans.
Graph., 2:217–236, 1983. 3

[7] T. Dinh and G. Medioni. Context tracker: Explor-
ing supporters and distracters in unconstrained envi-
ronments. In IEEE CVPR, 2011. 1

[8] W. Hu, X. Xiao, Z. Fu, D. Xie, T. Tan, and S. May-
bank. A system for learning statistical motion patterns.
IEEE PAMI, 28(9):1450 –1464, sept. 2006. 2

[9] C. Huang, B. Wu, and R. Nevatia. Robust object track-
ing by hierarchical association of detection responses.
In ECCV, volume 5303 of Lecture Notes in Computer
Science, pages 788–801. Springer, 2008. 1, 2

[10] S. L. Junlian Xing, Haizhou Ai. Multi-object track-
ing through occlusions by local tracklets filtering and
global tracklets association with detection responses.
In IEEE CVPR, pages 1200–1207, 2009. 2

[11] D. Kuettel, M. D. Breitenstein, L. V. Gool, and V. Fer-
rari. What’s going on? discovering spatio-temporal
dependencies in dynamic scenes. IEEE CVPR, pages
1951–1958, 2010. 2

[12] P. Mordohai and G. Medioni. Dimensionality esti-
mation, manifold learning and function approximation
using tensor voting. JMLR, 11:411–450, 2010. 4

[13] A. Perera, C. Srinivas, A. Hoogs, G. Brooksby, and
W. Hu. Multi-object tracking through simultaneous
long occlusions and split-merge conditions. In IEEE
CVPR, volume 1, pages 666 – 673, 2006. 2

[14] J. Prokaj, M. Duchaineau, and G. Medioni. Inferring
tracklets for multi-object tracking. In Workshop of
Aerial Video Processing Joint with IEEE CVPR, 2011.
1, 2, 3, 4, 6

[15] J. Prokaj and G. Medioni. Accurate efficient mosaick-
ing for wide area aerial surveillance. In IEEE WACV,
pages 273 –280, 2012. 2, 3

[16] V. Reilly, H. Idrees, and M. Shah. Detection and track-
ing of large number of targets in wide area surveil-
lance. In ECCV, volume 6313 of Lecture Notes in
Computer Science, pages 186–199. Springer, 2010. 1,
2

[17] R. L. Rothrock and O. E. Drummond. Performance
metrics for multiple-sensor multiple-target tracking.
In Proceedings of SPIE, volume 4048, pages 521–531,
2000. 6

[18] I. Saleemi, L. Hartung, and M. Shah. Scene under-
standing by statistical modeling of motion patterns. In
IEEE CVPR, pages 2069–2076, 2010. 2

[19] X. Wang, X. Ma, and E. Grimson. Unsupervised ac-
tivity perceptionby hierarchical bayesian models. In
IEEE CVPR, pages 1–8, 2007. 2

[20] J. Xiao, H. Cheng, H. Sawhney, and F. Han. Vehi-
cle detection and tracking in wide field-of-view aerial
video. In IEEE CVPR, pages 679 –684, 2010. 2

[21] A. Yilmaz, O. Javed, and M. Shah. Object tracking: A
survey. ACM Comput. Surv., 38(4):13, 2006. 1

[22] Q. Yu and G. Medioni. Motion pattern interpretation
and detection for tracking moving vehicles in airborne
video. In IEEE CVPR, pages 2671 –2678, 2009. 1, 4

[23] L. Zhang, Y. Li, and R. Nevatia. Global data associa-
tion for multi-object tracking using network flows. In
IEEE CVPR, pages 1 –8, 2008. 2

[24] X. Zhao and G. Medioni. Robust unsupervised mo-
tion pattern inference from video and applications. In
IEEE ICCV, pages 715 –722, 2011. 1, 2, 4

[25] B. Zhou, X. Wang, and X. Tang. Random field topic
model for semantic region analysis in crowded scenes
from tracklets. In IEEE CVPR, pages 3441–3448,
2011. 2

7

https://doi.org/10.1109/CVPRW.2012.6239204
https://doi.org/10.1109/CVPRW.2012.6239204
https://www.sdms.afrl.af.mil/index.php?collection=clif2006
https://www.sdms.afrl.af.mil/index.php?collection=clif2006

